

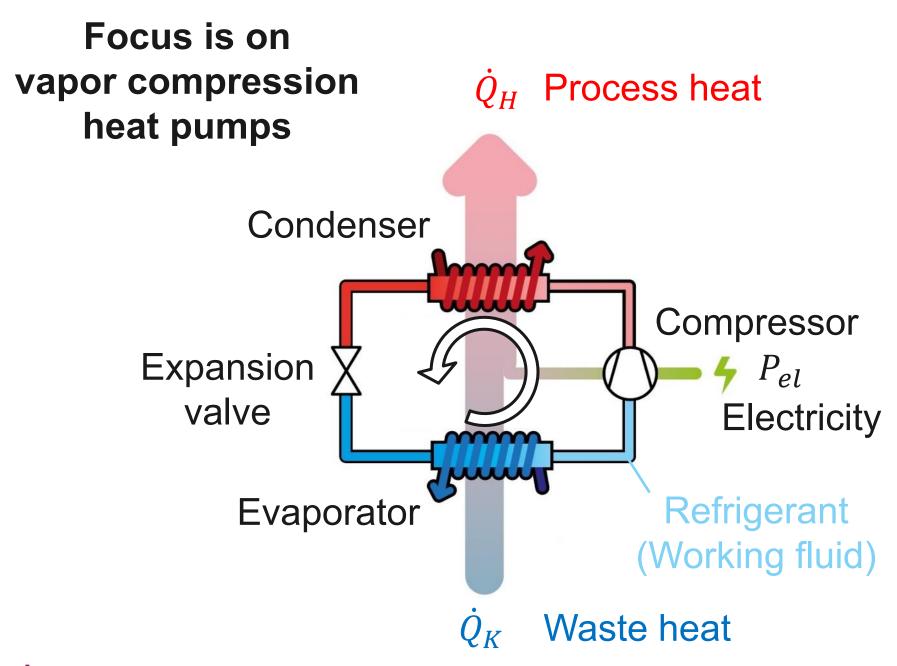
A2PH Webinar: High temperature heating solutions November 10, 2021

Dr. Cordin Arpagaus cordin.arpagaus@ost.ch
Tel. +41 81 377 94 34

Institute for Energy Systems IES www.ost.ch/ies

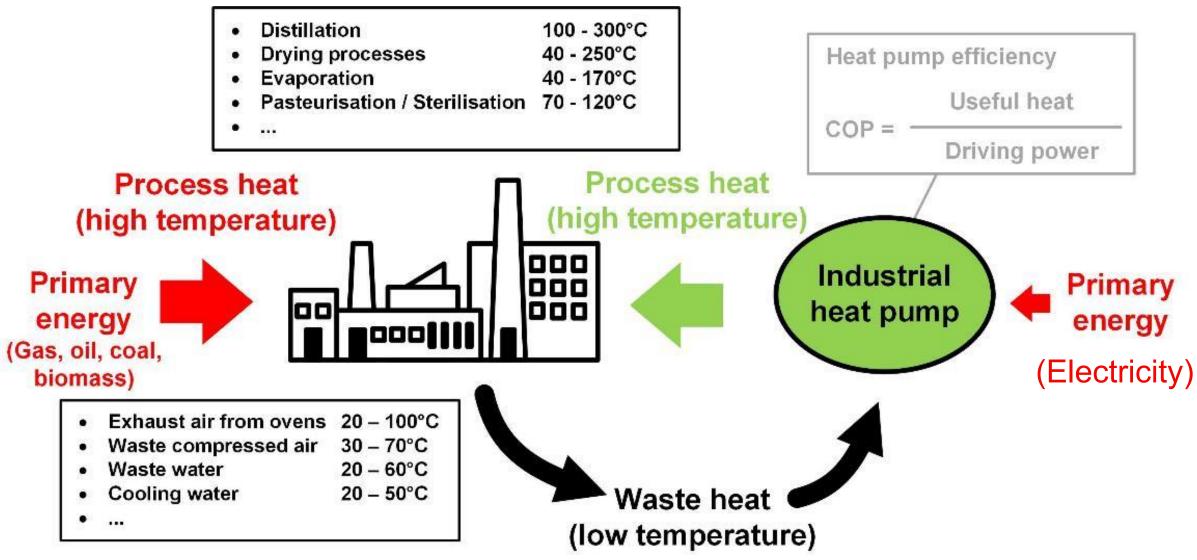
Content

- HTHP Technologies
- Research Update
- Steam Generating Heat Pumps
- Application Examples



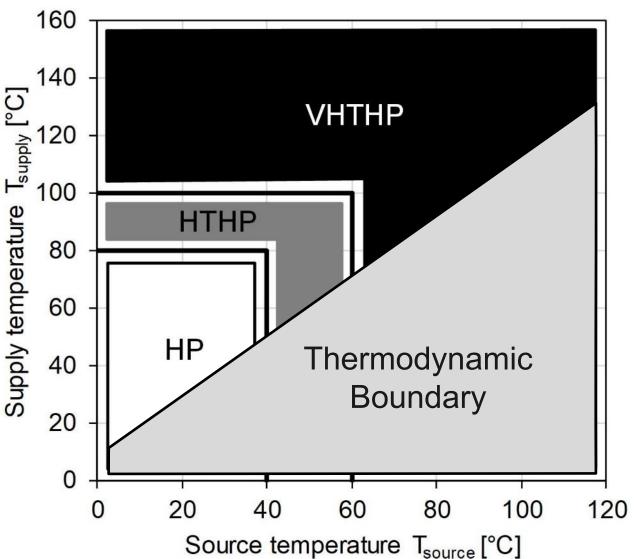
Industrial Heat Pump Definition of IEA HPT Annex 48 project

>100 kW heating capacity applied for industrial processes but also for district heating and large residential buildings.



COP (Coefficient of Performance)

$$COP_H = \frac{\dot{Q}_H}{P_{el}}$$

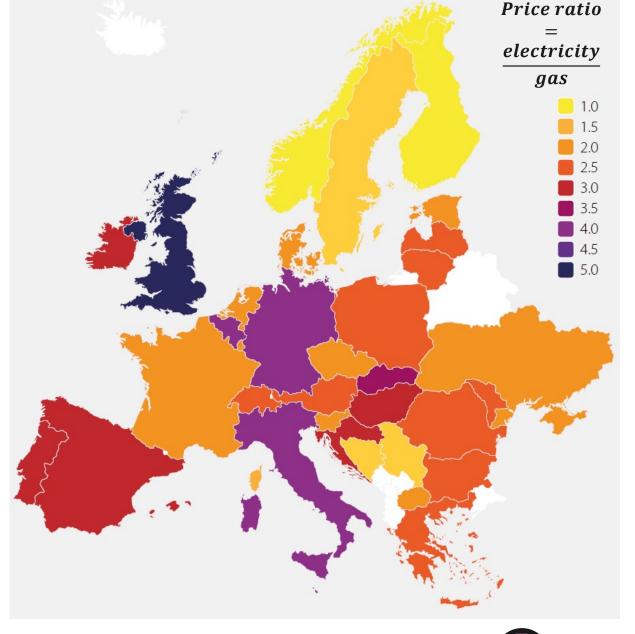


Industrial Heat Pumps for Waste Heat Recovery

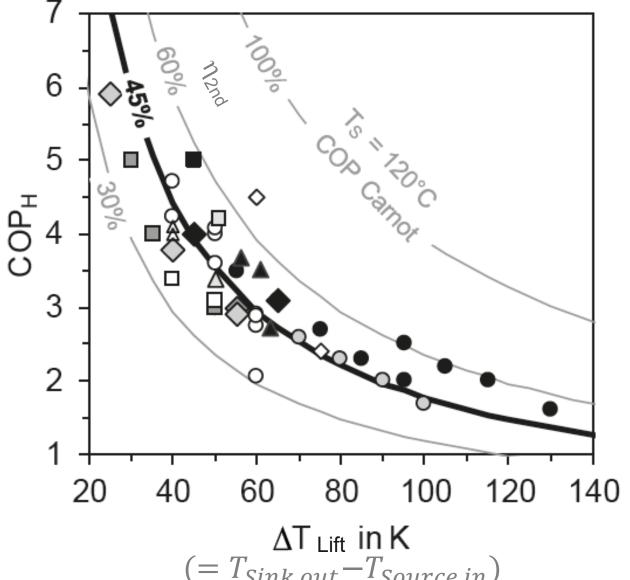
Temperature Ranges and Heat Pump Classification

VHTHP: Very High Temperature Heat Pump

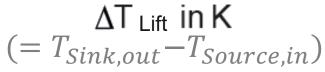
HTHP: High Temperature Heat Pump


HP: Conventional Industrial Heat Pump

Market Attractiveness depends on Price Ratio between Electricity and Gas


- Decarbonization requires increased use of renewable electricity
- Electricity is more expensive than fossil fuel in many European countries

For small scale industrial end-users with 2 GWh/a to 20 GWh/a electricity 3 GWh/a to 28 GWh/a gas


Efficiency (COP) of Industrial Heat Pumps

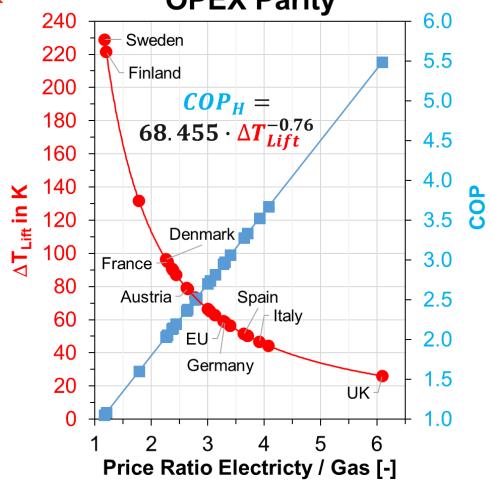
COP Fit-curve (45% 2nd Law efficiency)

$$COP_H = 68.455 \cdot \Delta T_{Lift}^{-0.76}$$

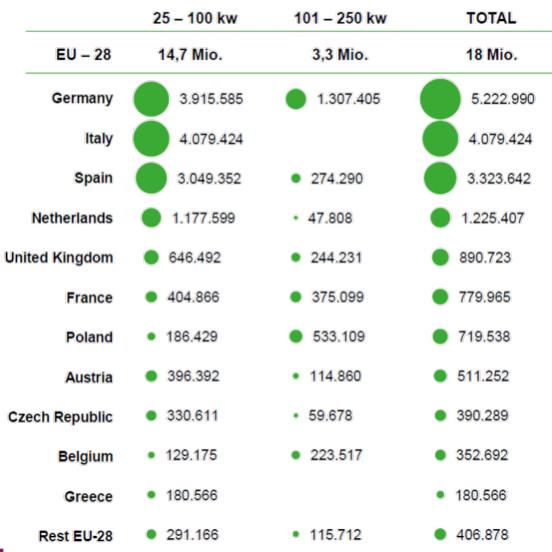
ΔT_{Lift}	COP_H
30 K	5.2
40 K	4.1
50 K	3.5
60 K	3.0
70 K	2.7
80 K	2.4

OPEX Parity COP and Temperature Lift

$COP - \frac{Price_{Electricity}}{}$	
$COP = \frac{Price_{Gas}}{Price_{Gas}}$	· η Gas Boiler
1 1 coo Gas	90%


	Pri	ces without	OPE	X Parity	
Country	Gas	Electricity	Price Ratio	COP	ΔT_Lift
Sweden	4.1	4.8	1.17	1.1	229
Finland	4.5	5.4	1.20	1.1	222
Luxembourg	2.3	4.1	1.78	1.6	132
Lithuania	3.0	6.8	2.27	2.0	96
Denmark	3.1	7.0	2.26	2.0	96
France	2.8	6.4	2.29	2.1	95
Netherlands	2.6	6.2	2.38	2.1	90
Slovenia	2.5	6.1	2.44	2.2	87
Estonia	3.0	7.1	2.37	2.1	91
Czech Republic	2.4	6.3	2.63	2.4	79
Austria	2.8	7.4	2.64	2.4	78
Latvia	2.7	7.5	2.78	2.5	73
Hungary	2.5	7.0	2.80	2.5	73
Greece	2.5	7.5	3.00	2.7	66
Poland	2.4	7.2	3.00	2.7	66
Romania	2.3	7.0	3.04	2.7	65
Croatia	2.3	7.2	3.13	2.8	63
Belgium	2.0	6.8	3.40	3.1	56
Germany	2.6	8.6	3.31	3.0	58
Bulgaria	2.0	6.8	3.40	3.1	56
Spain	2.5	9.1	3.64	3.3	51
Portugal	2.4	8.9	3.71	3.3	50
Ireland	2.7	10.0	3.70	3.3	50
Italy	2.4	9.4	3.92	3.5	47
Slovakia	2.5	10.2	4.08	3.7	44
UK	2.1	12.8	6.10	5.5	26
EU	2.5	8.2	3.28	3.0	59

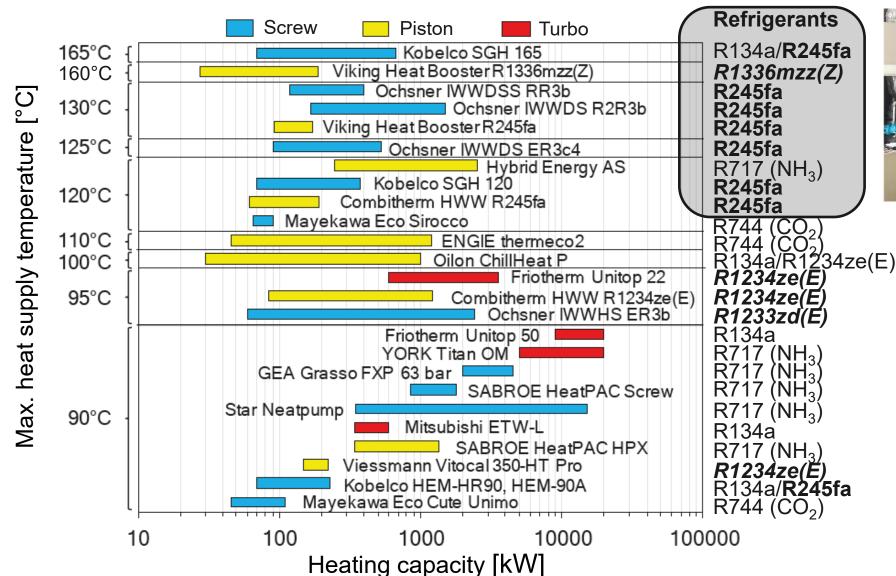
Heat Pump vs.


Gas Boiler (90% efficiency)

OPEX Parity

Decarbonization of the Heat Sector in Europe Stock of Boilers (Oil, Gas, Coal) in EU28* (Status 2015)

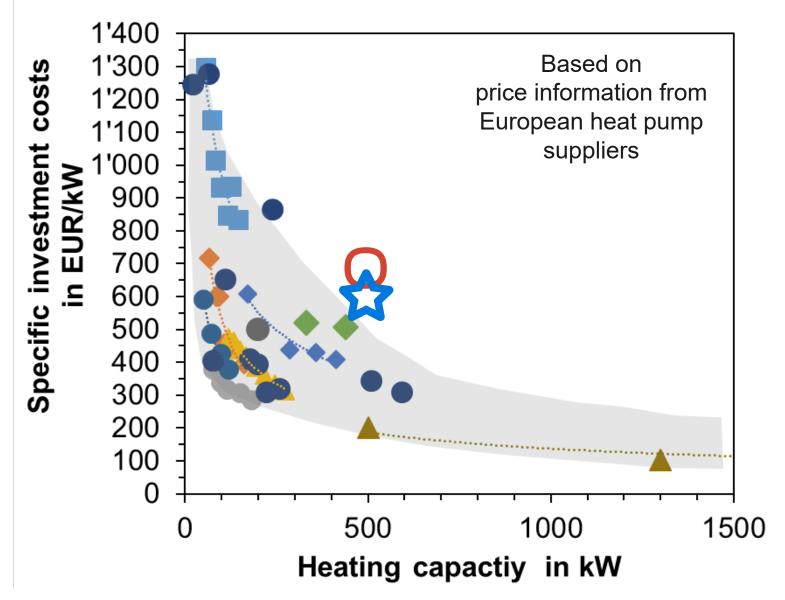
*based on European Comission (2016): Mapping and analysis of current and future (2020-2030) heating / cooling fuel development (fossils/renewables)


Challenges to further spread Industrial HPs into the market

- 1. Low level of awareness of the technical possibilities and economically feasible application potential among users, consultants, investors, planners, manufacturers and installers
- 2. Lack of knowledge about the integration of heat pumps into existing industrial processes (retrofit)
- 3. Factory-built vs. tailor-made designs (economies of scale)
- **4. Amortization periods** longer as for gas or oil-fired boilers (price ratio electricity to gas)
- Competing heating technologies (fossil, and renewable energies)
- 6. Requirements of heat storage to compensate for the time lag between demand and supply (e.g. heat pump for band load, gas boiler for heating peaks)
- 7. Lack of available compressors for high temperatures and refrigerants with low global warming potential (GWP) and zero ozone depletion potential (ODP)

Commercial Industrial HTHPs (Status end of 2018)

Kobelco SGH 120/165 (Steam Grow Heat Pump)

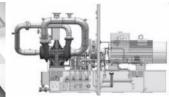

HeatBooster S4 (Viking Heat Engines AS) (now Heaten)

Specific investment costs per kW of heating

IWWDSS 630 R6R4ab (500 kW)

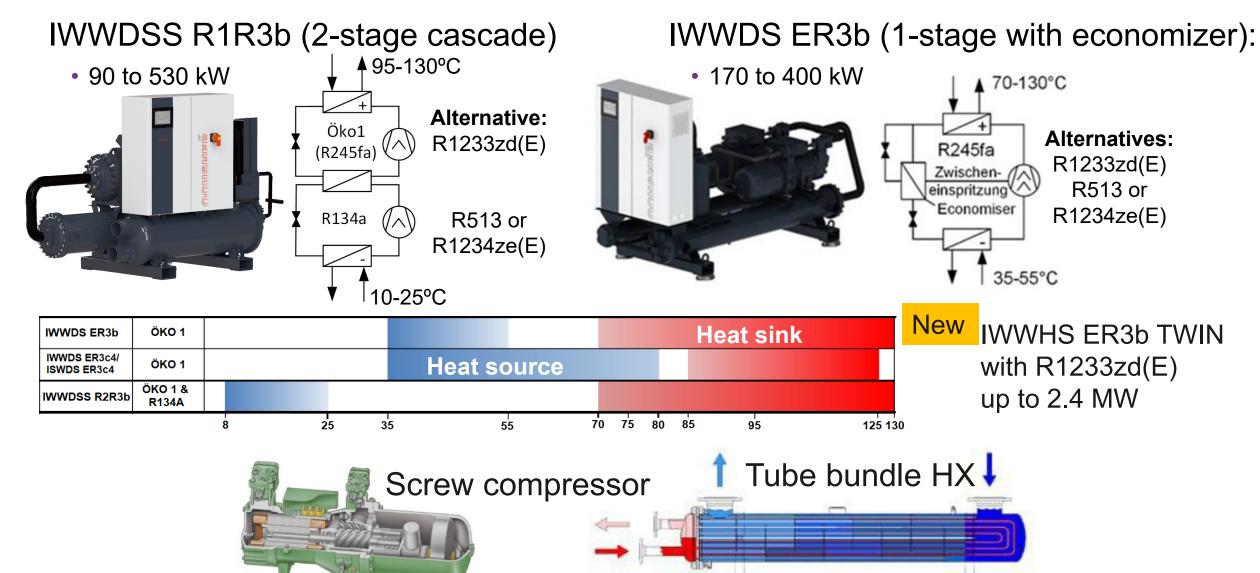
SGH120 (370 kW) SGH165 (624 kW) (sales and after-service base in Europe)

These prices are rough values. The actual prices depend on the sales channels.



Examples of Large Scale HTHPs (>1 MW) for district heating and industrial applications

Company	Turboden (IT)	MAN Energy (CH)	Mitsubishi MHPS (DE)	Siemens (DE)	Ochsner (AT)	Kobelco (JP)
Product	LHP30 LHP150	ETES	D-GWP	Large-scale	IWWDSS R2R3b IWWHS ER3b TWIN	SGH 120/165
Refrigerant	R601 + R718 (n-Pentane + Water)	R744 (CO ₂)	R600a + R718 (Iso-Butane + Water)	HFOs	Öko (R245fa) R1233zd(E) (HFOs)	R245fa + R718
Heating capacity	2.7 MW 14.4 MW	5 to 100 MW	4.3 MW	4 to 35 MW	Up to 750 kW TWIN 2.4 MW	Up to 624 kW Cascade 2.5 MW
Max. supply temp.	115 °C	150 °C	174 °C	150 °C	130 °C	165 °C



OCHSNER Energie Technik GmbH (Austria)

HTHP Case Studies

	Mänttä-Vilpula (FIN)	Leather production Couro Azul (POR)	Université de Bourgogne, Dijon (FRA)	Plansee Reutte (AUT)	GVS Schaffhausen (CH)
Heat pump type	IWWDS 120 ER3	IWWDS 270 ER4b	IWHSS 430 R2R3	IWHS 400 ER3	ISWHS 60 ER3
Heating Capacity	158 kW	309 kW	420 kW	380 kW	63 kW
Heat Sink	120 °C	120 °C	90 °C	90 °C	80 – 95 °C
Heat Source	45 – 55 °C	55 °C	10 – 15 °C	45 °C	37 °C
Source	District heating network return line	Water	Water	Waste heat from sintering process	Waste heat from chiller
Compressor Refrigerant	Screw ÖKO 1 (R245fa)	Screw R1233zd	Screw R134a + ÖKO 1 (R245fa)	Screw ÖKO 1 (R245fa)	Screw ÖKO 1 (R245fa)
COP	2.0	2.47	2.6	4.0	4.2
Installation	2017	2021 (Shipment)	2015	2013	2017
Application	Local district heating network	Hot water for production	Heating and cooling of computer room and offices	Process heat recovery for plant district heating network	Warehouse heating and cooling

Bitzer – Screw Compressors

BITZER'S PATH TO HIGH TEMPERATURE HEATING CSH SCREW COMPRESSORS

// Step-by-step concept

NEW: Ext. Envelope

CSH-M1 Standard

A1: R134a/R513A/R450A A2L: R1234yf/R1234ze(E)

to max: +25°C tc max: +70°C

CSH-M1 Extension

A1:R134a/R513A/R450A

to max: +30°C (Target)

tc max: +80°C

A2L: R1234ze(E)

to max: +50°C

tc max: +95°C

B1: R245fa

tc max: +100°C

CSH2T-M1 Product Variant

B1:R245fa

A1: R1224yd(Z) R1336mzz(Z)

A2: R1234ze(Z)

to max: + 75°C (Target)

tc max: +125°C

Investigations ongoing

CS - NEW Product

A1: R1336mzz(Z) R1233zd(E)

A3: Hydrocarbons (HC's)

to max: tbd°C (Target)

tc max: +160°C

Pre-considerations have started

EXTENSION

MID-TERM

LONG-TERM

Bitzer – Screw Compressors

PROJECT REFERENCE CSH2T PROTOTYPE

(CSH9583-280Y,R1233zdE,+35/+122°C,10/0K, ECO, 60Hz)

Evap. temp. up to 50/70°C

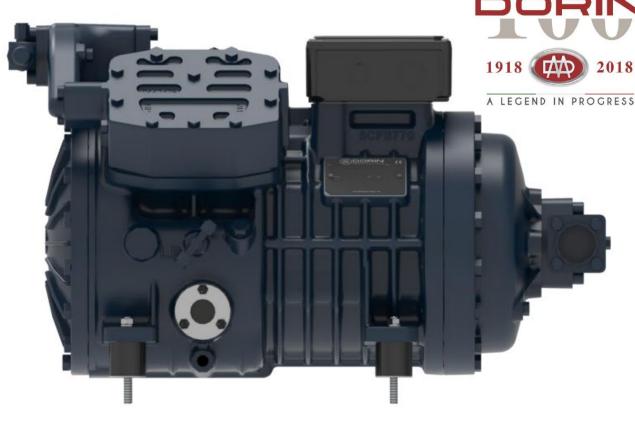
Condensing temp. up to 125°C

SH max ~ 20K SGT max ~100°C SDT max ~140°C Heating Cap. up to 410 kW

PROCESS&
DISCTRICT
HEATING

Design pressure 19/28 bar

R1233zd(E)


Selected models 700/805 m³/h (50 Hz)

→ ~ 25 parts need to be evaluated, requalified and / or replaced

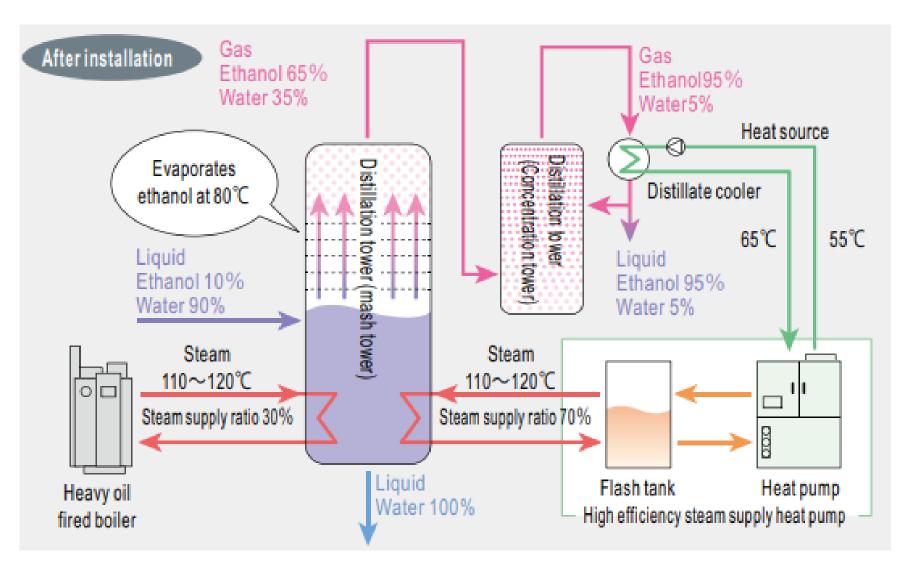
Dorin – R600 (Butane) ATEX Piston Compressor for HTHPs

EXTERNAL DISCHARGE MANIFOLD

160°C MAX DISCHARGE TEMPERATURE

ON THE MOTOR COVER

25% LARGER ELECTRIC MOTOR


Commercialized Industrial HTHPs over 100 °C in Japan

	MAYEKAWA	KOBELCO	KOBELCO	MHI Thermal Systems	Fuji Electric
External Appearance					
Commercialized Year	2009	2011	2011	2011	2015
Product Name	Eco Sirocco	SGH120	SGH165	ETW-S	_
Heat Source/Sink	Water/Air	Water/Steam	Water/Steam	Water/Water	Water/Steam
Supply Temperature	60 -120 °C	100- 120 °C	135- 175 °C	130 °C	100- 120 °C
Heat Source Temperature	0-40°C	25-65°C	35-70°C	55°C	60-80°C
Heating Capacity (Steam Rate)	110 kW*1	370 kW*2 (0.51 ton/h)	624 kW*3 (0.89 ton/h)	627 kW*4	30 kW* ⁵ (45 kg/h)
СОР	3.7*1	3.5*2	2.5*3	3.0*4	3.5*5
Refrigerant	R744 (CO ₂)	R245fa	R245fa+R134a	R134a	R245fa
Compressor	Reciprocating	Screw	Screw	Centrifugal	Reciprocating
Heat Pump Cycle	Transcritical	Subcritical	Subcritical + Steam Compression	Transcritical	Subcritical

^{*1} Heat source: 30-25°C, Heat sink: 20-100°C *2 Heat source: 65-60°C, Heat sink: 20-120°C *3 Heat source: 70-65°C, Heat sink: 20-165°C *4 Heat source: 55-50°C, Heat sink: 70-130°C *5 Heat source: 80-75°C, Heat sink: 20-120°C

Case Study: Distillation of Bioethanol

Hokkaido Bioethanol Co., Ltd.

Installed year

2012

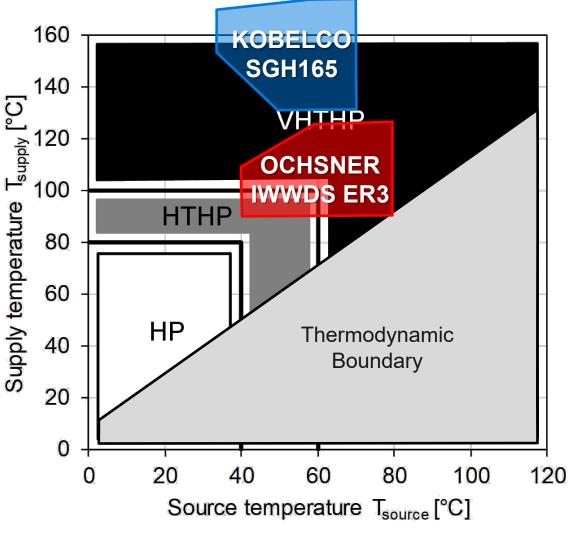
Steam (120°C)

SGH120 (× 5 units) Refrigerant: R245fa Steam flow: 2 ton/h

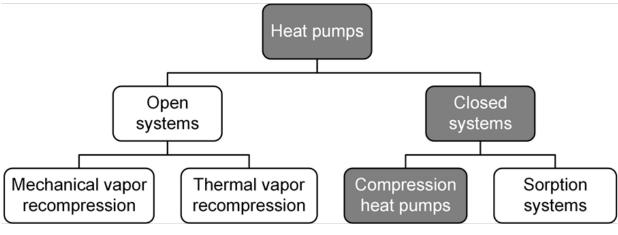
CO₂ reduction: 43%*1

Primary energy reduction: 40%*2

Energy cost reduction: 54%

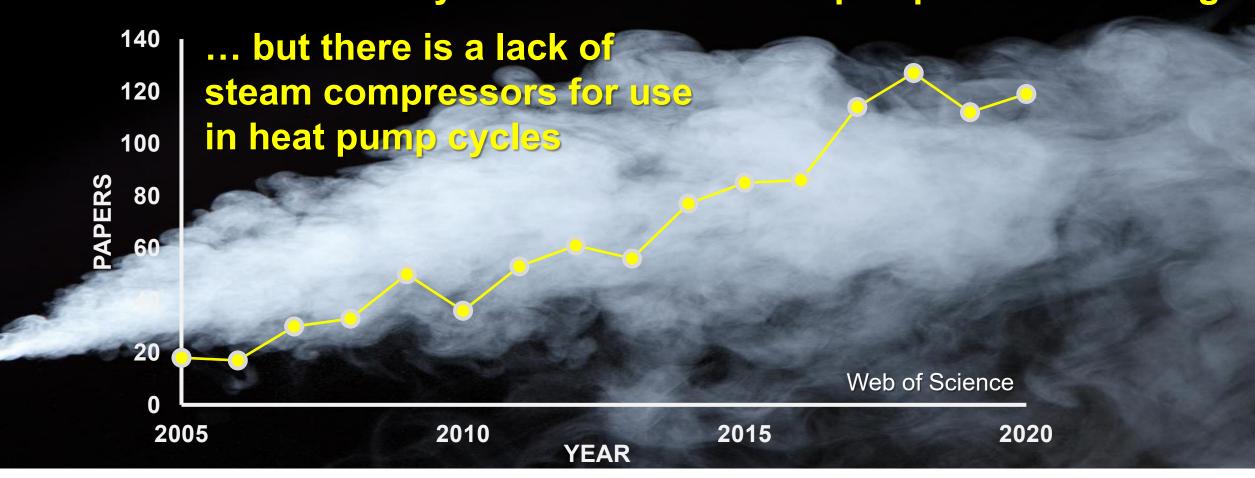


^{*1} Electricity: 0.681 kg-CO₂/kWh (Hokkaido EPCo, FY2013), Heavy oil: 2.71 kg-CO₂/L

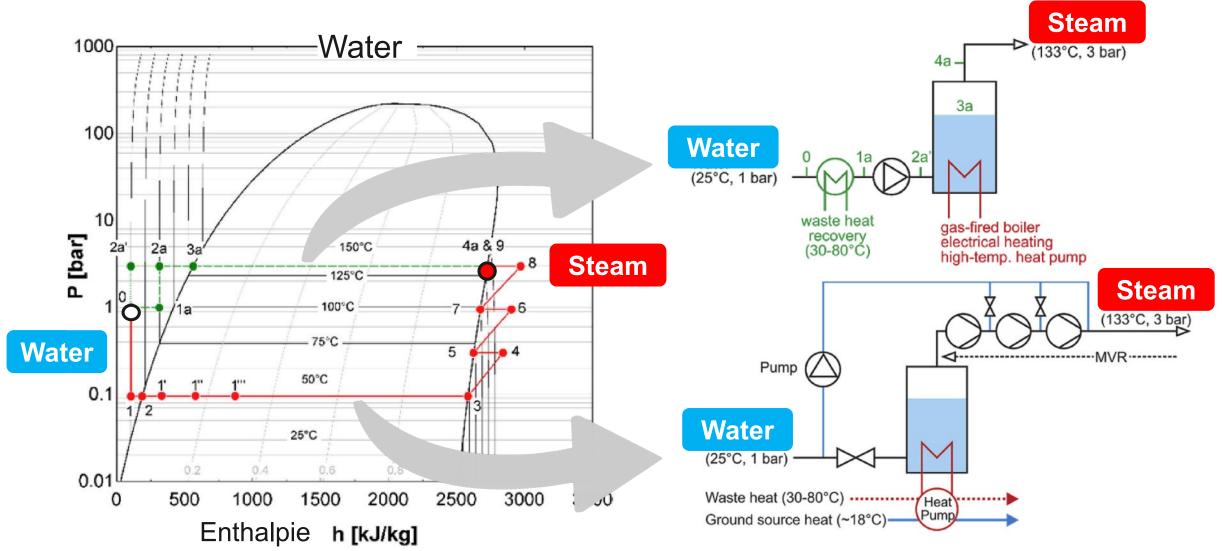

^{*2} Electricity: 9.76 MJ/kWh, Heavy oil: 39.1 MJ/L

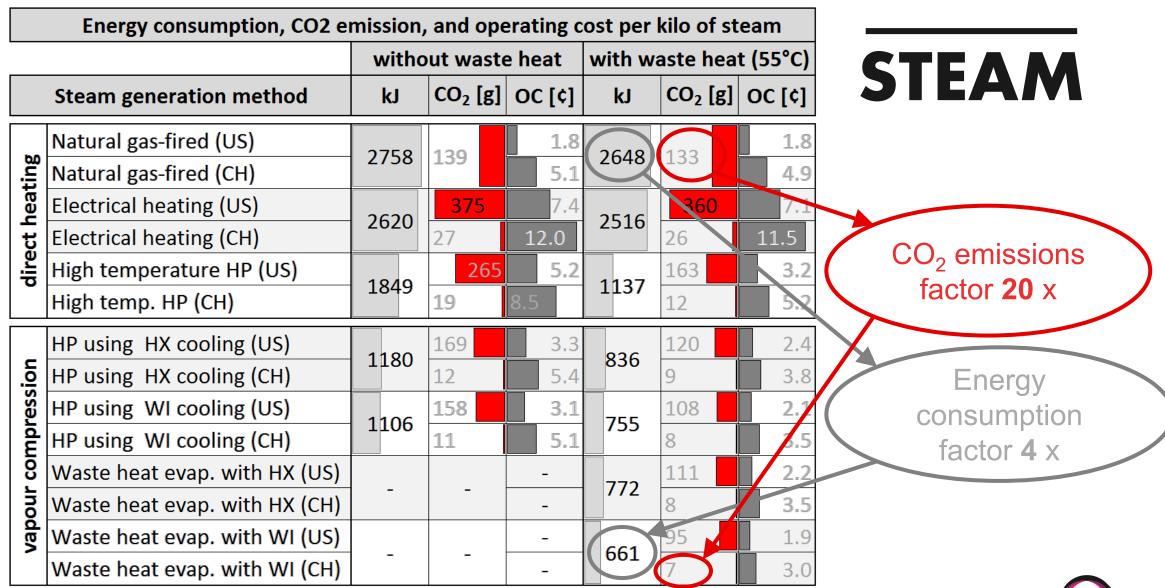
Heat Pump Classification

Focus is on vapor compression heat pumps

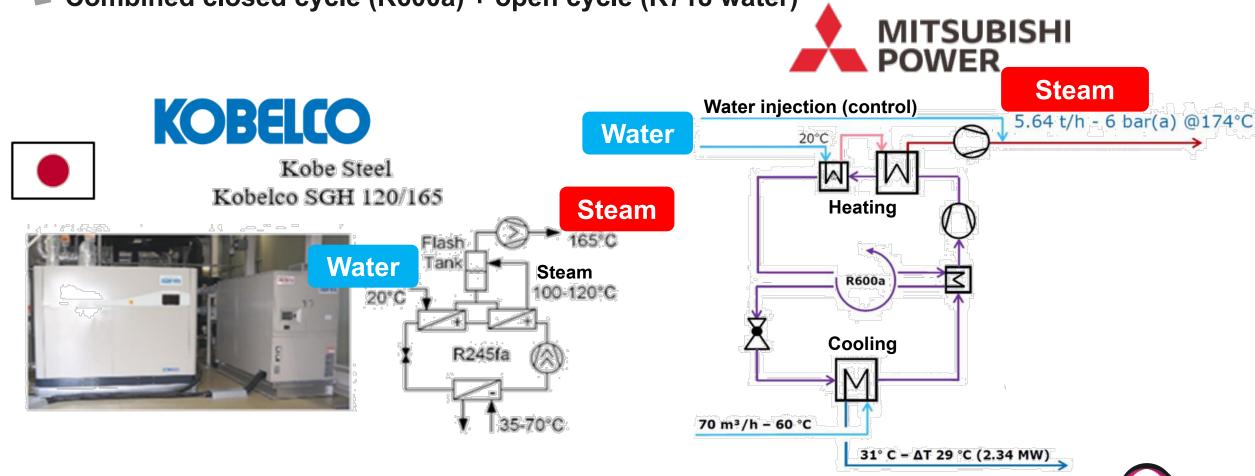

HP: Conventional Industrial Heat Pump HTHP: High Temperature Heat Pump VHTHP: Very High Temperature Heat Pump

Steam Generating Heat Pumps


Publications with keywords «steam + heat pump» are increasing


Open-cycle – highly efficient

Energy Savings and CO₂ Emissions Reduction

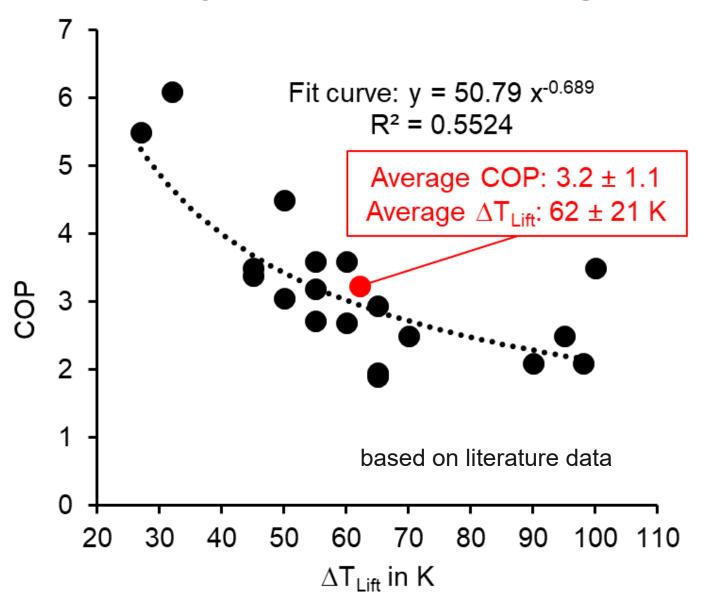


Steam Generating Heat Pumps

Cycle with Condenser/Subcooler (R245fa) + Flash Tank + MVR

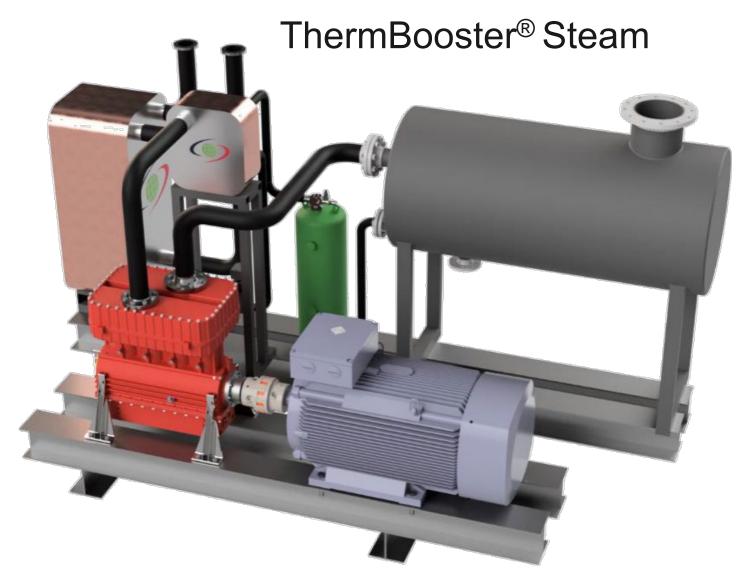
■ Combined closed cycle (R600a) + open cycle (R718 water)

Research on Steam Generating Heat Pumps



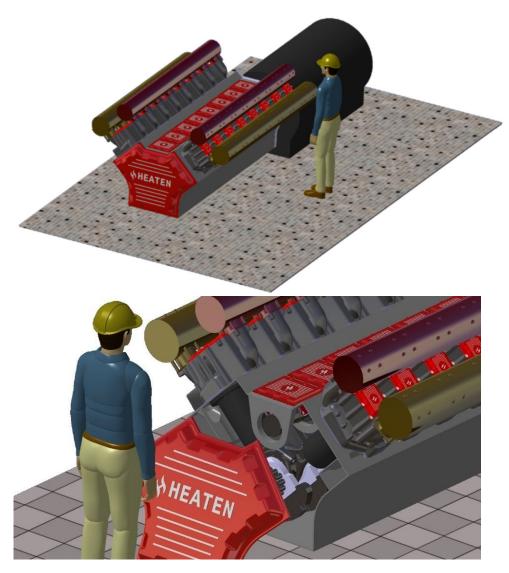
	Country, organization	Heating capacity (kW)	Heat source temperature (°C)	Steam temperature (°C) (flow rate kg/h)	Heat pump cycle, compressor	Refrigerant	COP (source/sink temperature°C)
,	Korea Institute of Energy	300	60	128 (422)	HTHP + flash tank, piston	R245fa	n.a.
A	Research (KIER)	100	70	120	HTHP + flash tank, open screw	R245fa	3.05 (70/120)
	The section (This is,	25	60	104 - 123	HTHP + IHX + flash tank + valve	R245fa	~ 3.5 (60/105)
111	Seoul National University,	6-8	60 - 70	115 - 125 (10.8)	HTHP, piston	R245fa	2.95 (60/125) 3.59 (60/115)
	Korea	6 - 12	60 - 80	115 - 125	HTHP + steam reservoir + MVR	R245fa	3.39 (80/125) 2.72 (60/115)
	Tokyo Electric Power, Mayekawa, Japan	400	80 - 90	130	HTHP, screw	R601 (pentane)	4.5 (80/130)
	Kobe Steel, Ltd., CRIEPI, electric companies, Japan	660 380	35 - 70 25 - 65	165 (890) 120 (20)	HTHP + MVR, screw	R134a/R245fa (SGH165) R245fa (SGH120)	2.5 (70/165) 3.2 (65/120)
* :	Mayekawa, Waseda University, Japan	300	80	100 - 180 (thermal oil)	Transcritical HTHP, centrifugal	R600 (butane)	3.5 (80/180) calculated
	Shanghai Jiao Tong University, China	285	75 - 85 (evaporation)	111 - 150 (condensation)	VHTHP + flash tank, twin-screw	R718 (water)	6.10 (85/117) 1.96 (85/150)
	ECN, IBK, Bronswerk, Smurfit-Kappa, Netherlands	160	60	125 (2.4)	HTHP + IHX + subcooler, piston	R600 (butane)	1.9 (60/125)
	Olvondo Technology, TINE dairy, Norway	449	80 - 90	184 (10)	HTHP (reversed Stirling cycle), piston	R704 (helium)	2.1 (85/183)
	NTNU, SINTEF, Norway	20	25 - 35	115	HTHP cascade + IHX	R290/R600 (propane/butane)	2.1 (25/115)
	AlterECO project, EDF, France	200	35 - 60	80 -140 (condensation)	HTHP + IHX + subcooler, two scroll	ECO3 containing R245fa	2 - 3 (50-60/125) (evap/cond)
	PACO project, Uni Lyon, EDF, France	380	85 - 95	130 -140 (condensation)	HTHP + flash tank, twin-screw	R718 (water)	~5.5 (94/121)
*	National Research Council Canada	45	55 - 80	103.5 - 135.5	HTHP + IHX, piston	R113 & R123 (ozone depleting)	2.7 (75/135, R113) 3.6 (60/120, R123)

Efficiency of Steam Generating Heat Pumps



- Average steam generation temperature: 131 ± 22 °C
- Average source temperature: 69 ± 25 °C

SPH Sustainable Process Heat GmbH


SPH Sustainable Process Heat

- Based on 1 Compressor (multi compressor arrangement possible)
- Output: 400 1000 kW
- Water/Steam or Steam/Steam Type
- Max. Steam Pressure: 6 bar(a), 160°C
- Refrigerants: R1233zd(E),R1336mzz(E), R1336mzz(Z)
- Future: Hydrocarbons like Pentane, Hexane, Ethanol, etc. for temperatures around 200°C

HEATEN AS (ex-Viking Heat Engines AS)

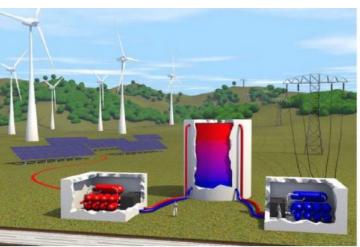
- Heaten AS has bought the bankruptcy estate of Viking Heat Engines AS
- 1 MW HeatBooster (pilot end of 2022)
- 6 MW HeatBooster with piston compressors in V-shape
- Supply temperature up to 165 °C
- Direct low-pressure (LP) steam production

EU Horizon 2020 Projects where the HeatBooster Piston Compressor Technology is demonstrated

DryFiciency (<u>www.dry-f.eu</u>)

Hot water generation of up to 160 °C for drying bricks at Wienerberger (AUT)

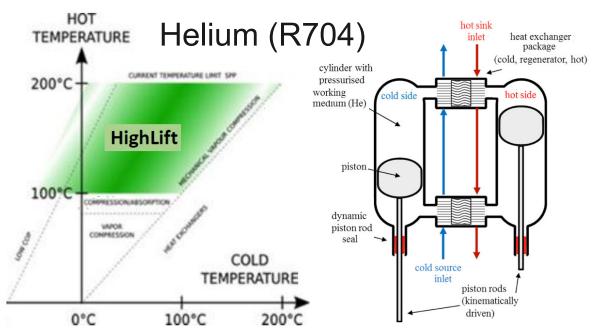
Bamboo (<u>www.bambooproject.eu</u>)


 Direct steam generation (150 °C) at Arcelor Mittal (steel mill in Spain)

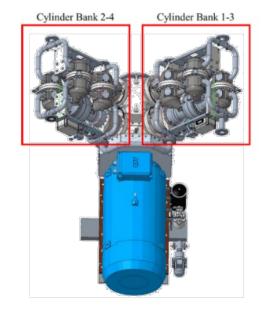
Chester (<u>www.chester-project.eu</u>)

- Storage of surplus renewable electricity in high temperature storage facilities
- Heat pump with R1233zd as working fluid for temperatures up to 150 °C

Olvondo (Norway)



Typical performance		
Typical output (hot)	500	kW
Typical output (cold)	250	kW
Typical power consumption	250	kW
COP _h , typical range	1.5 - 3.0	


Operation range	
Maximum temperature (hot side)	195 C
Minimum temperature (cold side)	-5 C
Maximum steam pressure	10 bar.

Output range

Startup times	cold start	preheated start
hot water production	<10 min	< 5 min
steam production	30-60 min	<10 min

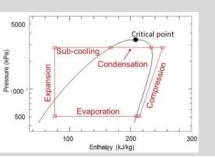
4-cylinder-double-acting Stirling engine

20-100%

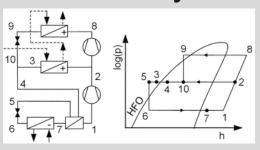
Case Study for Steam Production at AstraZeneca R&D facility in Gothenburg, Sweden

Performance at design point:

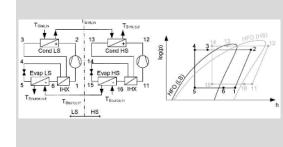
- Steam: 175 to 184 °C
- Waste heat source: 25 to 35 °C (water)
- **COP: 1.7**
- Heat supply capacity: 1.5 MW
- 3x HighLift heat pumps installed each with a capacity of 500 kW
- Working fluid: Helium (R704)
- Installation year: 2017

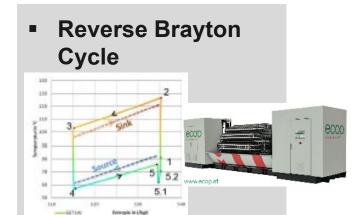

IEA HPT TCP Annex 58 – HTHPs

- Objective: Providing an overview of High Temperature Heat Pump Technologies with T_{Supply} > 100 °C
- 20 Leaflets of HTHP supplier technologies are available (30 expected)
- 5 Leaflets of realized installations are available (8 expected)
- Publication planned for 2022, Q1-2
- More details:
 https://heatpumpingtechnologies.org/annex58/

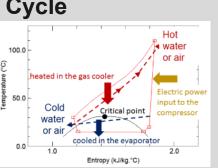


HTHP Technologies for Large Temperature Glides

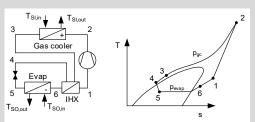

Subcritical Cycle with Subcooler

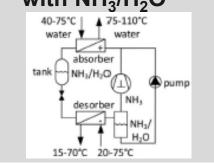


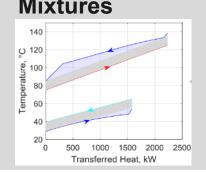
Two-stage Extraction Cycle



Two Parallel Subcritical Cycles



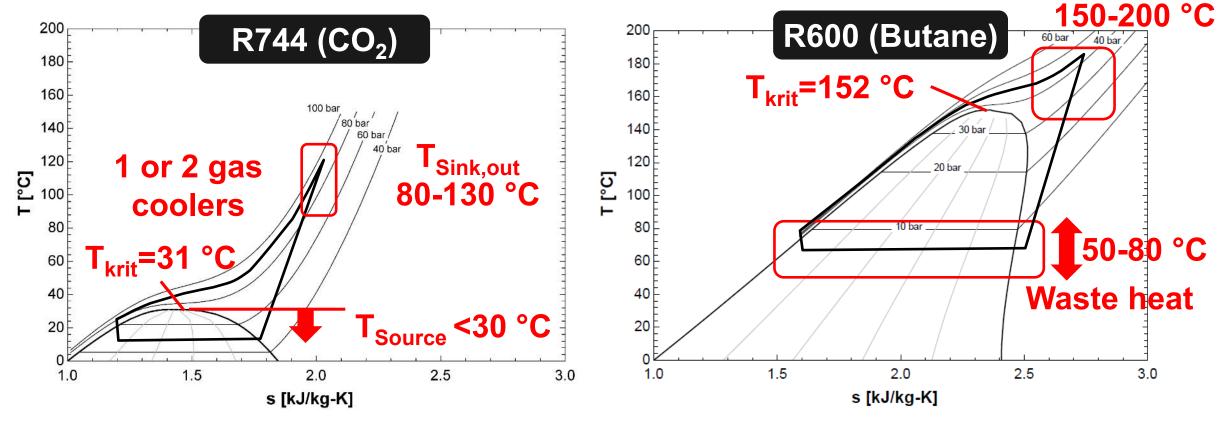

Transcritical CO₂Cycle


Transcritical Cycles with Hydrocarbons or HFOs

 Hybrid Heat Pump with NH₃/H₂O

Refrigerant Mixtures

to produce


HOT WATER

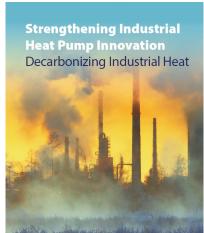
or

HOT AIR

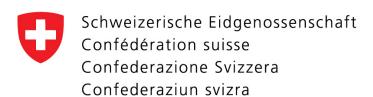
Transcritical CO₂ vs. Butane cycles

Suitable for simultaneous cooling (<30 °C) and heating (e.g. water or air from 20 to 90 °C)

Suitable for heat sources like waste heat (e.g. flue gas 50 to 80 °C) and producing hot air of 150 to 200 °C



Summary – Industrial Heat Pumps


- HOT WATER
- Market attractiveness of Industrial HPs depends on price ratio
- HOT AIR STEAM
- Various application case studies and demonstration projects
- Numerous HP products and technologies from various manufacturers are available on the market (>100 °C, >100 kW to MW capacity)
- Steam Generating Heat Pumps (Average COP of 3.2 at 62 K ∆T_{Lift})
- Specific HP Technologies and Cycles for large temperature glides up to 200 °C, steam generation, and large-scale heat pumps (>1 MW)
- Heat pump integration varies from case to case
- High research activity worldwide (DE, AT, CH, FR, NO, NL, JP, KR, and CN)
- Refrigerants trend towards natural R600 (butane), R601 (pentane), R744 (CO₂), R718 (H₂O) and synthetic HFOs / HCFOs with low GWP, like R1336mzz(Z), R1233zd(E), R1224yd(Z)

Literature References

- Mateu-Royo, C.; Arpagaus, C.; Mota-Babiloni, A.; Navarro-Esbrí, J.; Bertsch, S.: Advanced High Temperature Heat Pump Configurations using low GWP Refrigerants for Industrial Waste Heat Recovery: A Comprehensive Study, Energy Conversion and Management, Vol. 229, 1 February 2021, 113752, https://doi.org/10.1016/j.enconman.2020.113752
- Kosmadakis, G.; Arpagaus, C.; Neofytou, P.; Bertsch, S.: Techno-Economic Analysis of High-Temperature Heat Pumps with low-GWP Refrigerants for upgrading Waste Heat up to 150 °C, Energy Conversion and Management, Vol. 226, 113488, pp. 1-19, https://doi.org/10.1016/j.enconman.2020.113488
- Schiffmann, J.; Kontomaris, K.; Arpagaus, C.; Bless, F.; Bertsch, S.: Scale Limitations of Gas Bearing Supported Turbocompressors for Vapor Compression Cycles, International Journal of Refrigeration, Vol. 109, pp. 92-104, 2020, https://doi.org/10.1016/j.ijrefrig.2019.09.019
- Schlosser, F.; Jesper, M.; Vogelsang, J.; Walmsley, T.G.; Arpagaus, C.; Hesselbach, J.: Large-Scale Heat Pumps: Applications, Performance, Economic Feasibility and Industrial integration, Renewable and Sustainable Energy Reviews, Vol. 133, 1102019, pp. 1-20, 2020, https://doi.org/10.1016/j.rser.2020.110219
- Arpagaus, C.; Bertsch, S.: <u>Industrial Heat Pumps in Switzerland Application Potentials and Case Studies</u>, Final Report, on behalf of the Swiss Federal Office of Energy, SFOE contract number: SI/501782-01, Bern, 23 July 2020.
- De Boer, R.; Marina, A.; Zühlsdorf, B.; Arpagaus, C.; Bantle, M.; Wilk, V.; Elmegaard, B.; Corberán, J.; Benson, J.: <u>Strengthening Industrial Heat Pump Innovation, Decarbonizing Industrial Heat</u>, White Paper, 14 July 2020.
- Arpagaus, C.; Bertsch, S.: Experimental Comparison of R1224yd(Z) and R1233zd(E) in a High Temperature Heat Pump, 13th IEA Heat Pump Conference, Jeju, Korea, 26-29 April 2021.
- Arpagaus, C.; Bertsch, S.: Successful Application Examples of Industrial Heat Pumps in Switzerland, IIR International Rankine 2020 Conference, 27-31 July 2020, Glasgow, UK, https://doi.org/10.18462/iir.rankine.2020.1183
- Arpagaus, C.; Bertsch, S.: Experimental Comparison of HCFO R1233zd(E) and R1224yd(Z) in a High Temperature Heat Pump up to 150 °C, IIR International Rankine 2020 Conference, 27 to 31 July 2020, Glasgow, UK, https://doi.org/10.18462/iir.rankine.2020.1129
- Arpagaus, C.; Bertsch, S.: Experimental Comparison of HCFO and HFO R1224yd(Z), R1233zd(E), R1336mzz(Z), and HFC R245fa in a High Temperature Heat Pump up to 150 °C Supply Temperature, 18th International Refrigeration and Air Conditioning Conference at Purdue, 23-27 May 2021.
- Arpagaus, C.; Bless, F.; Bertsch, S.: Theoretical Analysis of Transcritical HTHP Cycles with low GWP HFO Refrigerants and Hydrocarbons for Process Heat Applications up to 200 °C, IIR International Rankine 2020 Conference, 27-31 July 2020, Glasgow, UK, https://doi.org/10.18462/iir.rankine.2020.1168
- Bless, F.; Arpagaus, C.; Bertsch, S.: Theoretical Investigation of High-Temperature Heat Pump Cycles for Steam Generation, 13th IEA Heat Pump Conference, Jeju, Korea, 26 -29 April 2021.
- Diewald, K; Arpagaus, C.; Hebenstreit, B.: Thermodynamic Analysis of low GWP HFO and HCFO Refrigerants in HTHP with Large Temperature Glides on the Heat Sink, IIR International Rankine 2020 Conference, 27-31 July 2020, Glasgow, UK, https://doi.org/10.18462/iir.rankine.2020.1166

Acknowledgements

Swiss Federal Office of Energy SFOE

www.sweet-decarb.ch

Thank you for your attention!

Dr. Cordin Arpagaus

Eastern Switzerland University of Applied Sciences Institute for Energy Systems IES

cordin.arpagaus@ost.ch Tel. +41 58 257 34 94 www.ost.ch/ies

