Industrial Heat Pumps Supplier update, suitable refrigerants and application examples in food & steam generation

Dr. Cordin Arpagaus

NTB University of Applied Sciences of Technology Buchs Institute for Energy Systems IES

cordin.arpagaus@ost.ch Tel. +41 81 377 94 34

INSTITUTE FOR

ENERGY SYSTEMS

NTE

Interstate University of Applied Sciences of Technology Buchs

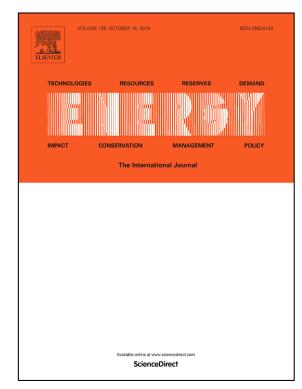
University of Applied Sciences of Eastern Switzerland

White Paper: Strenghtening Industrial Heat Pump Innovation

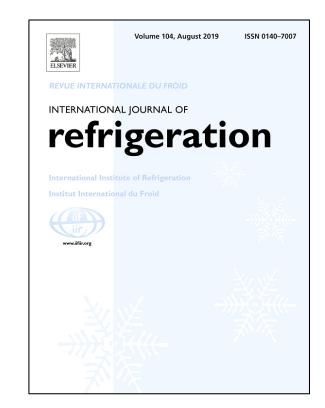
Strengthening Industrial Heat Pump Innovation Decarbonizing Industrial Heat

Authors: Robert de Boer, TNO Andrew Marina, TNO Benjamin Zühlsdorf, DTI Cordin Arpagaus, NTB Michael Bantle, SINTEF Veronika Wilk, AIT Brian Elmegaard, DTU José Corberán, UPValencia

Interstate University of Applied Sciences of Technology Buchs


University of Applied Sciences of Eastern Switzerland

Publications


Review Papers

Arpagaus C., Bless F., Uhlmann M., Schiffmann J., Bertsch S.S.: <u>Review - High temperature</u> <u>heat pumps: Market overview, state of the art,</u> <u>research status, refrigerants, and application</u> <u>potentials</u>, Energy, 2018, 152, 985-1010

 NTB
 Interstate University of Applied Sciences of Technology Buchs
 University of Applied Sciences of Eastern Switzerland

Arpagaus C., Bless F., Schiffmann J., Bertsch S.S.: <u>Multi-temperature heat</u> <u>pumps: A literature review</u>, International Journal of Refrigeration, 2016, 69, 437–465.

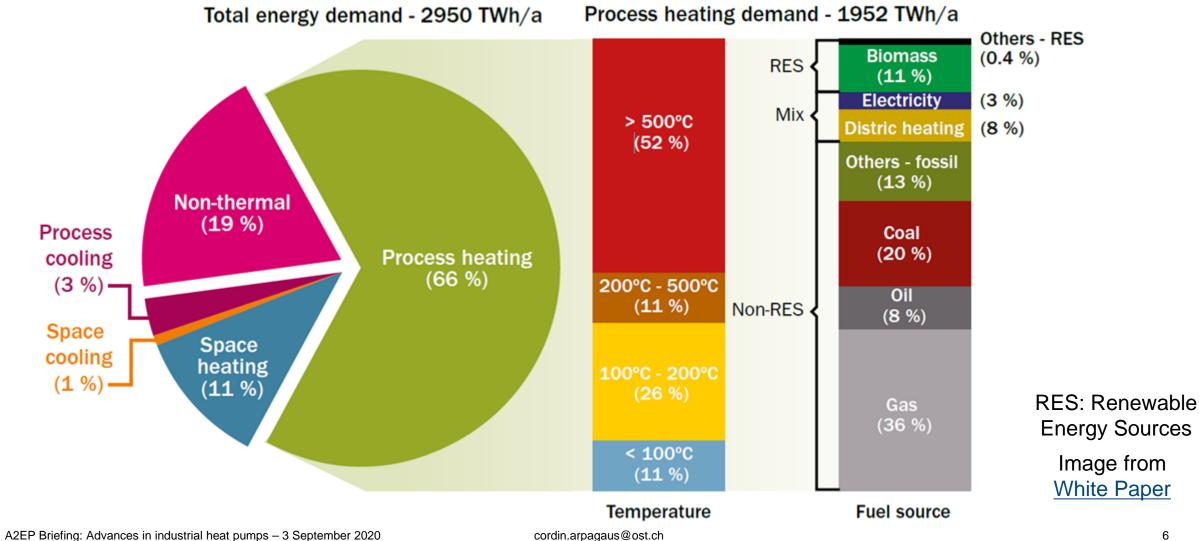
Publications

of Eastern Switzerland

Book «Hochtemperatur-Wärmepumpen» (in German)

Link: https://www.vde-verlag.de/buecher/494550/hochtemperatur-waermepumpen.html

Content

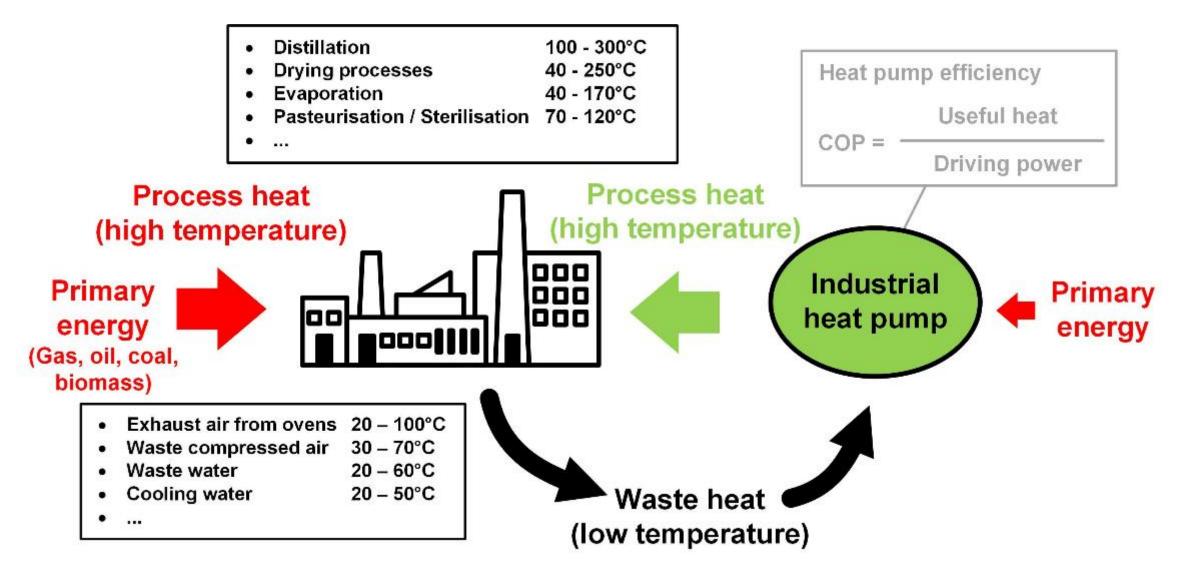

- Supplier update on industrial heat pumps
- Suitable refrigerants
- Application examples in food & steam generation

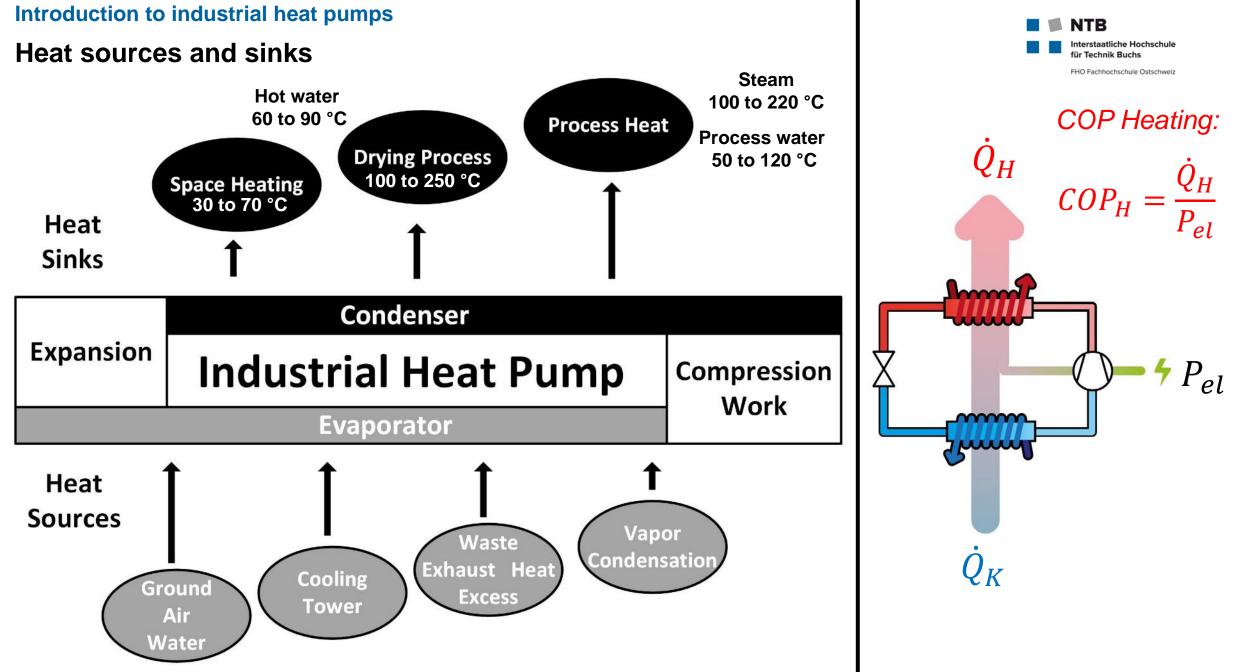
Introduction to industrial heat pumps

NTB Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences of Eastern Switzerland

Process heat demand in the European industry by application, temperature level and fuel source

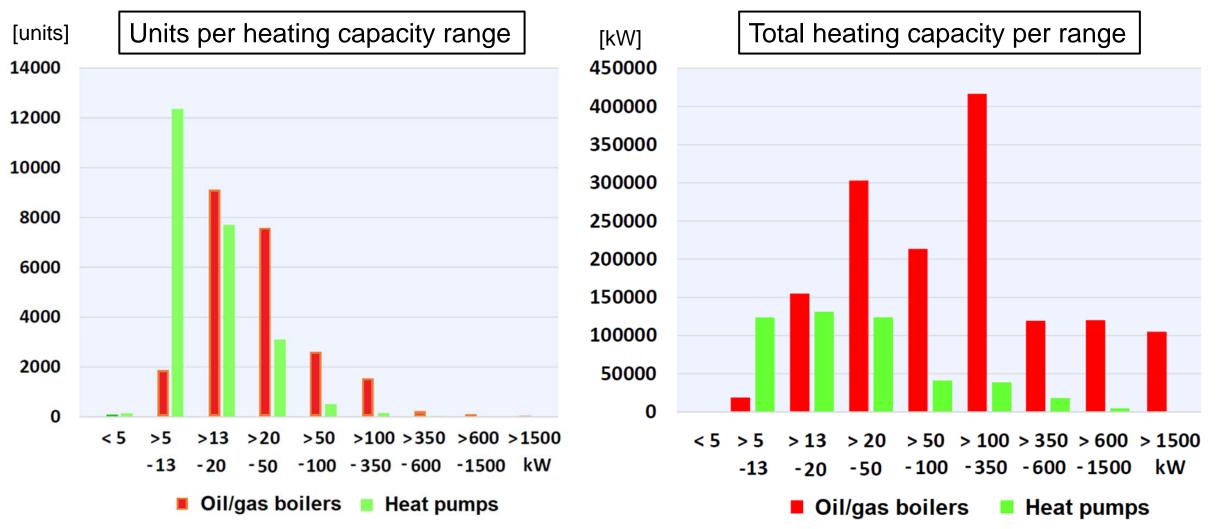
CO₂ emission levels of different heating technologies and fuels




	CO ₂ EMISSION PER KWH OF ENERGY (g CO _{2equivalent} /kWh)	EFFICIENCY OF TECHNOLOGY	CO ₂ EMISSION PER KWH OF USEFUL HEAT (g CO _{2equivalent} /kWh _{useful heat})
Gas condensing boiler	Gas: 242	eta = 95%	254
Gas non-condensing (eta = 85%)	Gas: 242	eta = 85%	284
Oil	Oil: 357	eta = 75%	476
Coal	Coal: 390	eta = 65%	612 Factor 10
Direct electric heating	Electricity: 400	eta = 100%	400
Heat pump (SPF 3)	Electricity: 400	eta = 300%	133
Heat Pump (SPF4)	Electricity: 400	eta = 400%	100
Heat Pump (SPF4) + electricity emission = 100	Electricity: 100	eta = 400%	25

of Eastern Switzerland

Efficient transformation of useful (waste) heat to higher temperatures

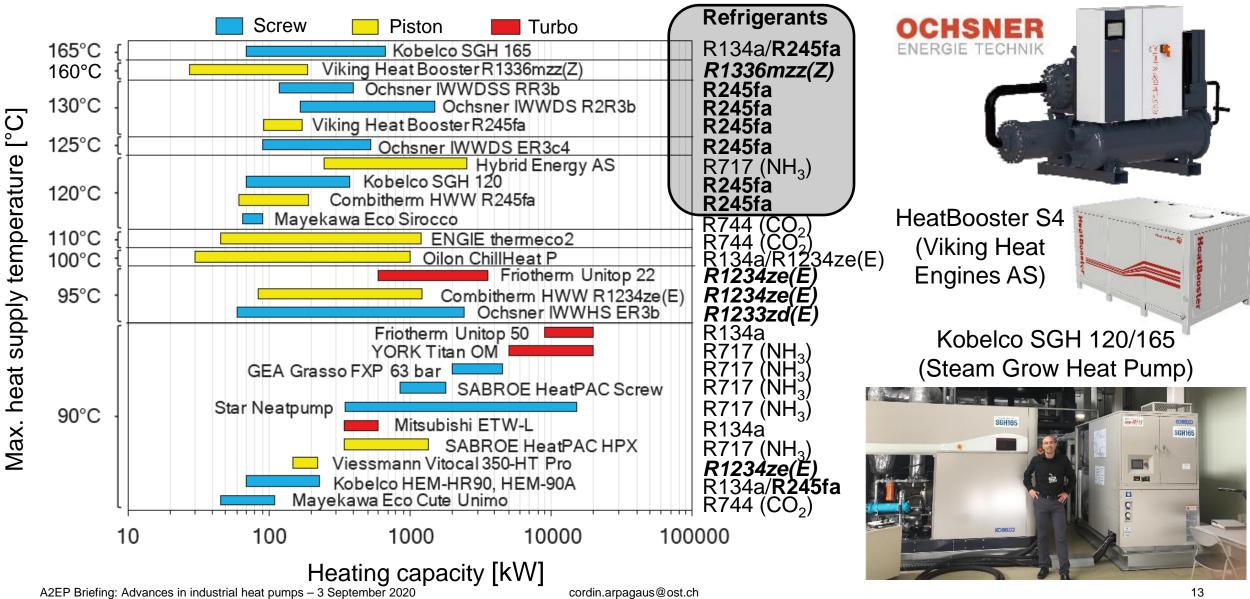


of Eastern Switzerland

Switzerland 2019:

Distribution of sales figures by number and total heating capacity

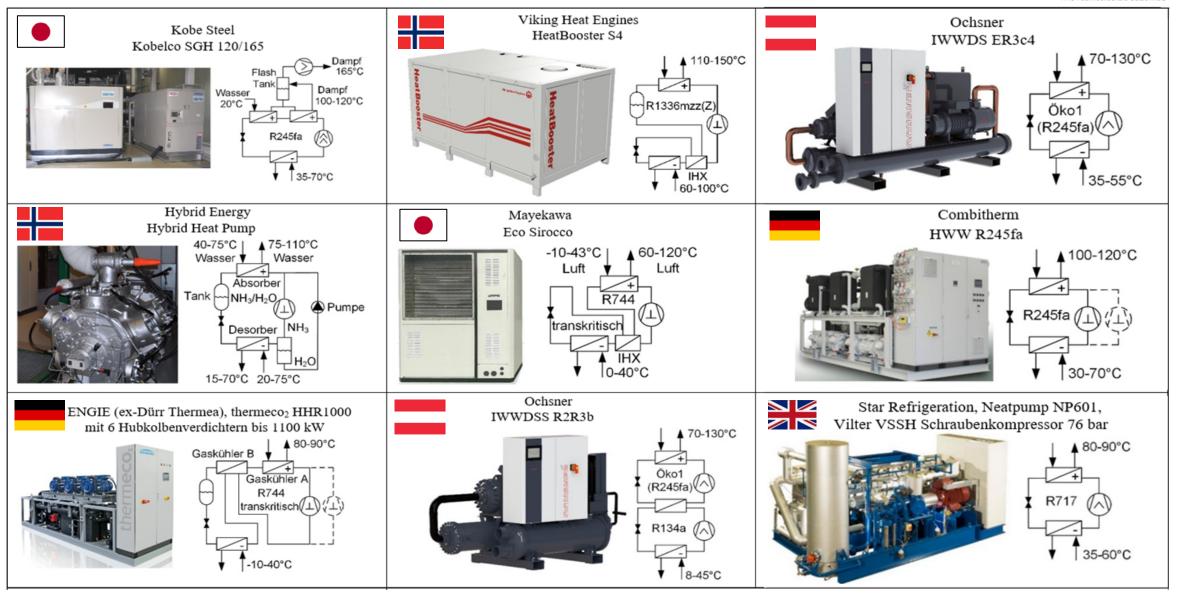
Challenges to further spread industrial heat pumps into the market


- Low level of awareness of the technical possibilities and economically feasible application potential of industrial heat pumps among users, consultants, investors, system planners, manufacturers and installers
- Lack of knowledge about the integration of heat pumps into existing industrial processes
- **Tailor-made designs**, i.e. small batch sizes (low economies of scale)
- Longer amortization periods than for gas or oil-fired boilers (required are ≤ 3 years). With lower electrical current and higher gas prices smaller amortization periods are reached.
- **Competing heating technologies** (with fossil fuels at low energy prices)
- Requirements of heat storage to compensate for the time lag between demand and supply (e.g. heat pump for band load, gas boiler for heating peaks)
- Lack of available compressors for high temperatures and refrigerants with low global warming potential (GWP) and zero ozone depletion potential (ODP)

University of Applied Sciences of Eastern Switzerland

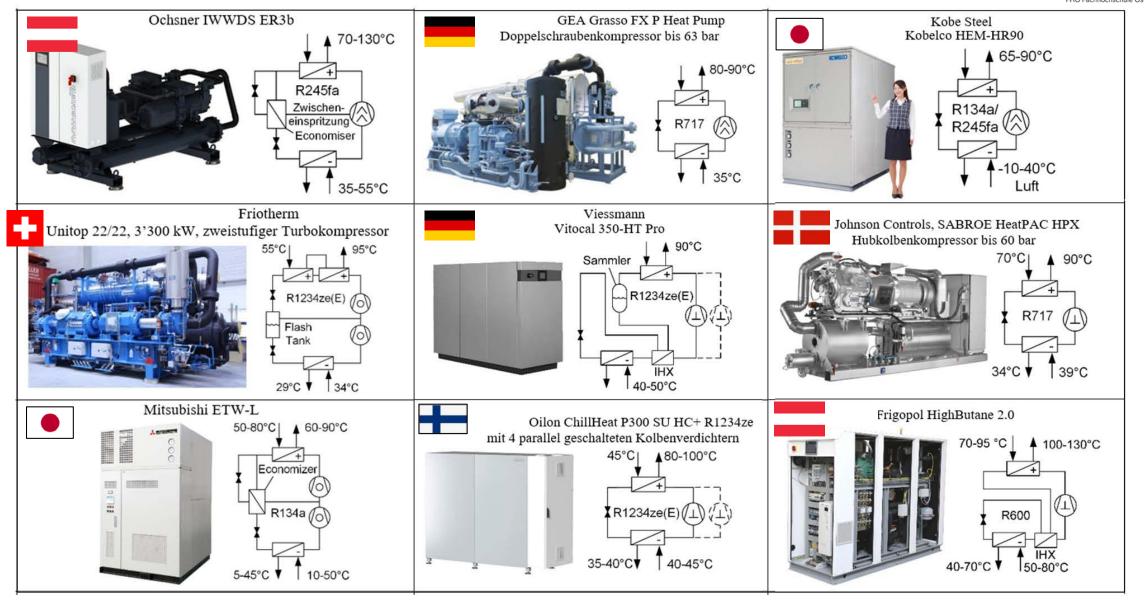
Supplier update

> 26 industrial HPs with heat supply ≥ 90 °C are commercially available



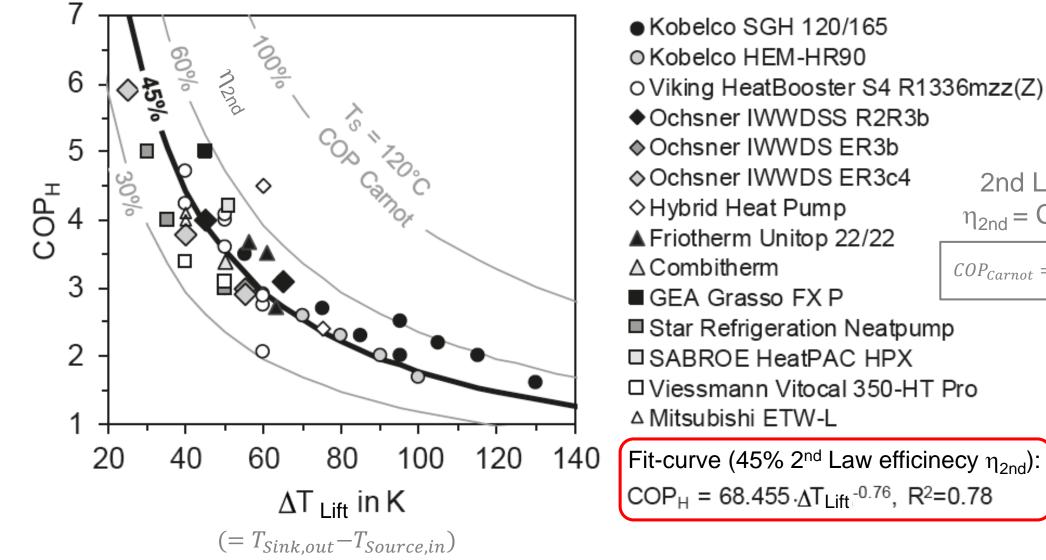
Interstate University of Applied Sciences of Technology Buchs

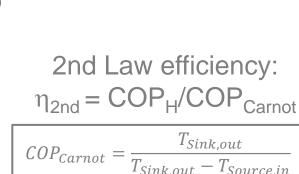
University of Applied Sciences of Eastern Switzerland

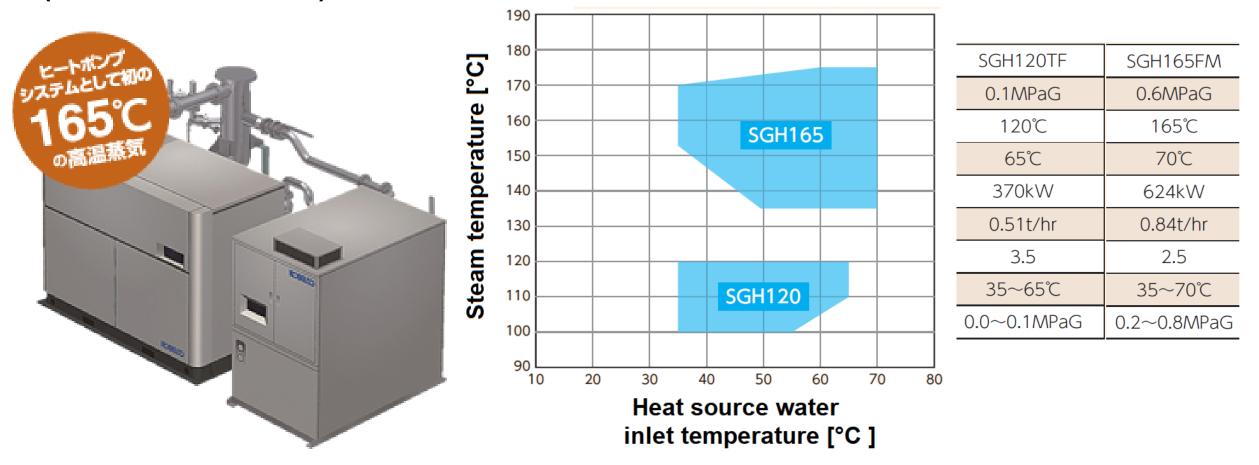

Selection of industrial heat pumps with heat pump cycles

Selection of industrial heat pumps with heat pump cycles

University of Applied Sciences of Eastern Switzerland

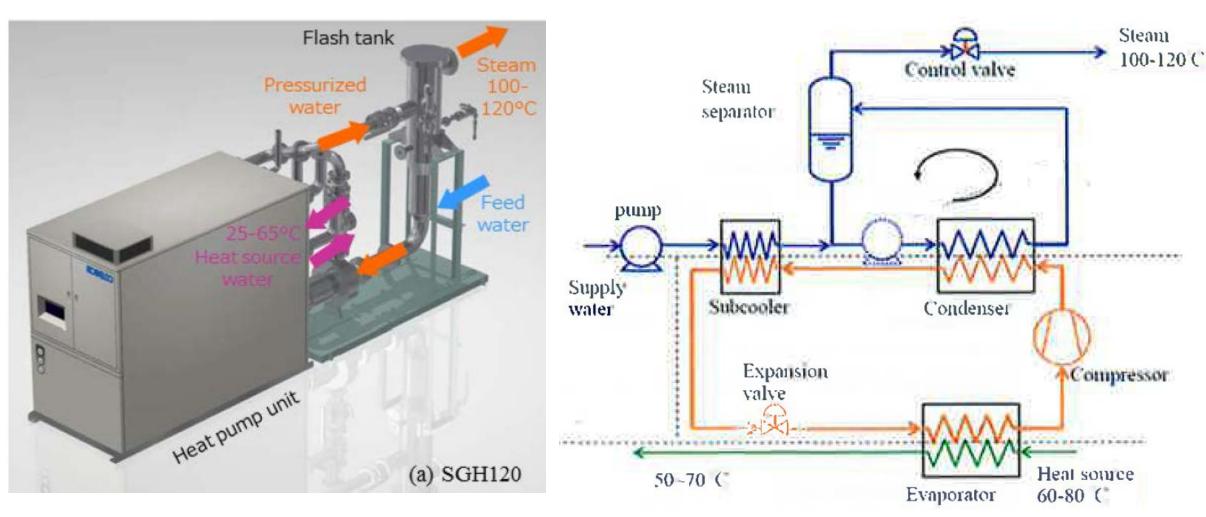

Selection of industrial heat pumps with heat supply temperature ≥ 90 °C


Manufacturer	Country	Product	Refrigerant	Max. T _{Supply}	Heating capacity	Compressor type
Kobe Steel		SGH 165	R134a/R245fa	165 °C	70 – 660 kW	
(Kobelco steam		SGH 120	R245fa	120 °C	70 – 370 kW	Double screw
grow heat pump)		HEM-HR90,-90A	R134a/R245fa	90 °C	70 – 230 kW	
Viking		HeatBooster	R1336mzz(Z)	160 °C	28 – 188 kW	Piston
Heating Engines AS		HeatBooster S4	R245fa	130 °C	92 – 172 kW	(4 parallel)
		IWWDSS R2R3b	R134a/ÖKO1	130 °C	170 – 750 kW	Screw
Ochsner		IWWDS ER3b	ÖKO1 (R245fa)	130 °C	120 – 400 kW	(TWIN unit upto 1,5 MW)
		IWWHS ER3b	ÖKO1 (R245fa or R1233zd)	95°C	60 – 640 kW	
Frigopol (& AIT)		HighButane 2.0	R600	130 °C	50 kW	Piston
Hybrid Energy		Hybrid Heat Pump	R717 (NH ₃)	120 °C	0.25 – 2.5 MW	Piston
Mayekawa		Eco Sirocco	R744 (CO ₂)	120 °C	65 – 90 kW	Screw
Iwiayekawa		Eco Cute Unimo	R744 (CO ₂)	90 °C	45 – 110 kW	Sciew
Combitherm		HWW 245fa	R245fa	120 °C	62 – 252 kW	Piston
Combinenti		HWW R1234ze	R1234ze(E)	95 °C	85 – 1301 kW	FISION
ENGIE (ex-Dürr thermea)		Thermeco ₂ HHR	R744 (CO ₂)	110 °C	45 – 1'200 kW	Piston (up to 6 parallel)
Oilon		ChillHeat	R134a	100 °C	30 – 1'000 kW	Piston
		P60 bis P450	R1234ze(E)			(up to 6 parallel)
Friotherm		Unitop 22	R1234ze(E)	95 °C	0.6 – 3.6 MW	Turbo
		Unitop 50	R134a	90 °C	9 – 20 MW	(two-stage)
Star Refrigeration		Neatpump	R717 (NH ₃)	90 °C	0.35 – 15 MW	Screw (Vilter VSSH 76 bar)
GEA Refrigeration		GEA Grasso FX P 63 bar	R717 (NH ₃)	90 °C	2 – 4.5 MW	Double screw (63 bar)
		HeatPAC HPX	R717 (NH ₃)	90 °C	326 – 1'324 kW	Piston (60 bar)
Johnson Controls		HeatPAC Screw	R717 (NH ₃)	90 °C	230 – 1'315 kW	Screw
		Titan OM	R134a	90 °C	5 – 20 MW	Turbo
Mitsubishi		ETW-L	R134a	90 °C	340 – 600 kW	Turbo (two-stage)
Viessmann		Vitocal 350-HT Pro	R1234ze(E)	90 °C	148 – 390 kW	Piston (2 to 3 in parallel)


of Eastern Switzerland

Efficiency (COP) range between 1.6 to 5.8 at temperature lifts of 130 to 30 K

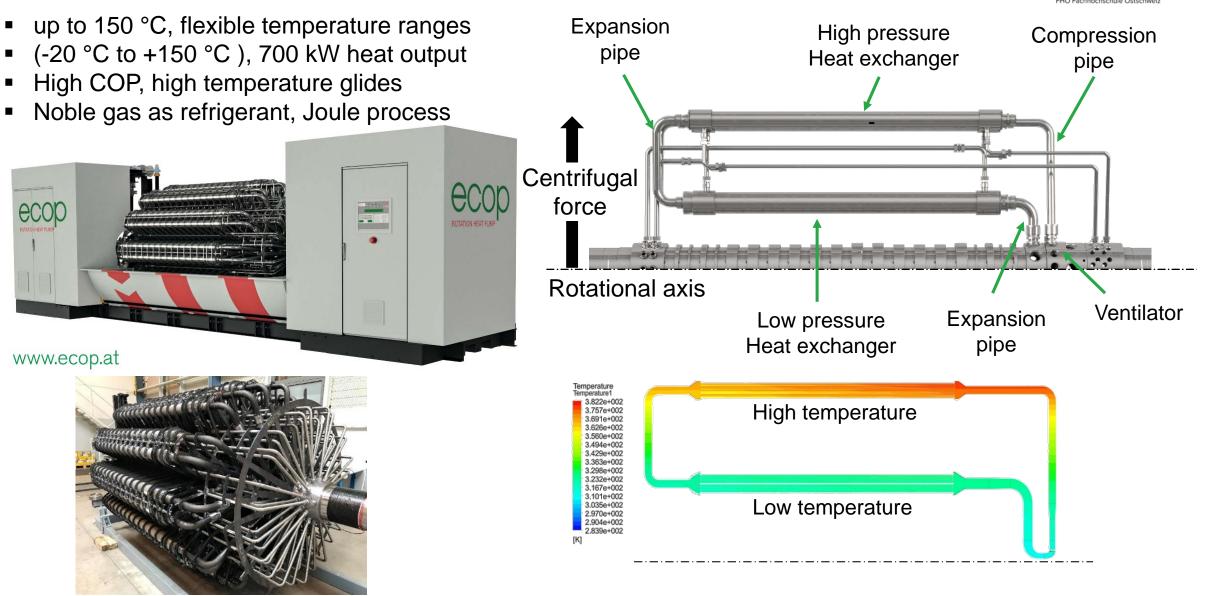
Steam Generating Heat Pump from Kobelco (Japan) (SGH120 und SGH165)


Link: https://www.kobelco.co.jp/products/download/machinery/files/kobelco_heatpump_sgh.pdf

University of Applied Sciences of Eastern Switzerland

Steam generation heat pumps

Steam Grow Heat Pump (SGH120 and SGH165) from Kobelco (Japan)

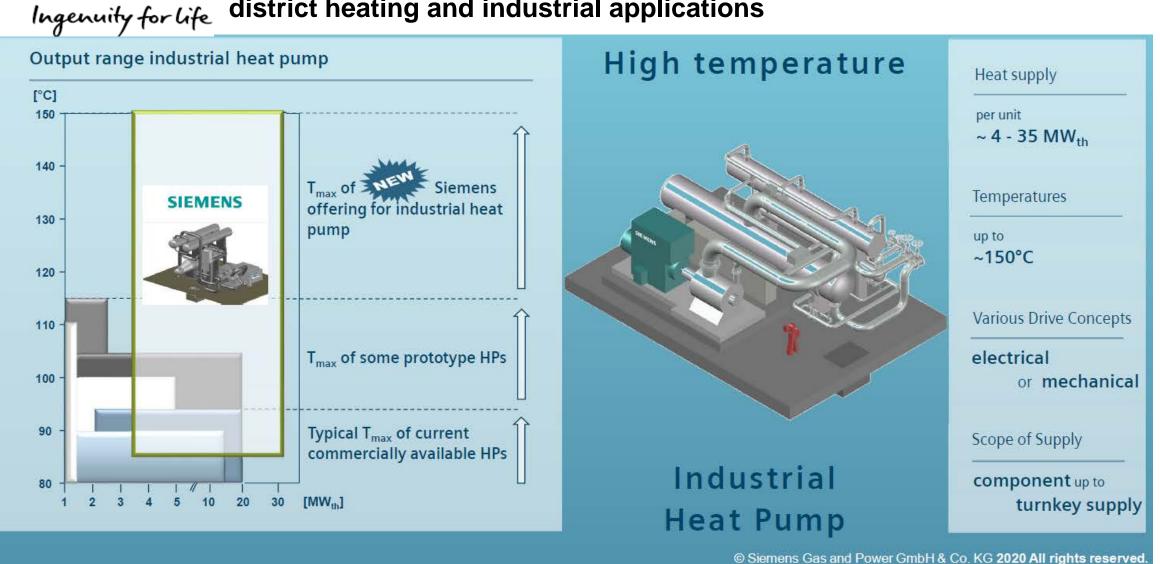

Link: https://www.kobelco.co.jp/products/download/machinery/files/kobelco_heatpump_sgh.pdf

NTB

Interstate University of Applied Sciences of Technology Buchs

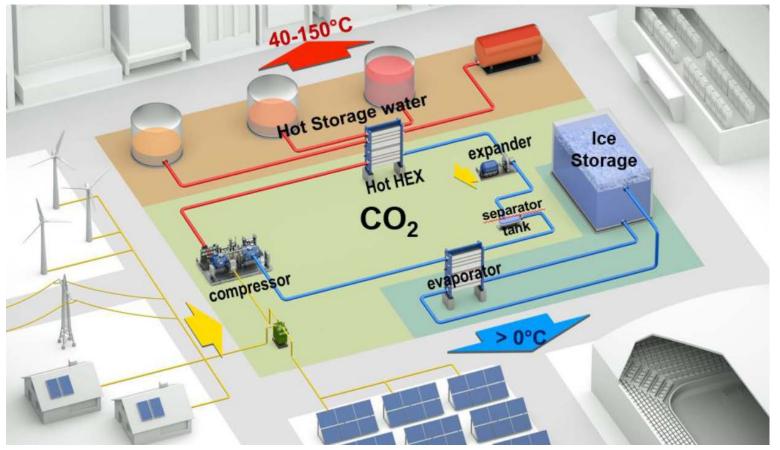
University of Applied Sciences of Eastern Switzerland

Rotation Heat Pump of ecop Technologies GmbH (Austria)


A2EP Briefing: Advances in industrial heat pumps – 3 September 2020

 NTB
 Interstaatliche Hochschule für Technik Buchs
 FHO Fachhochschule Ostschweiz

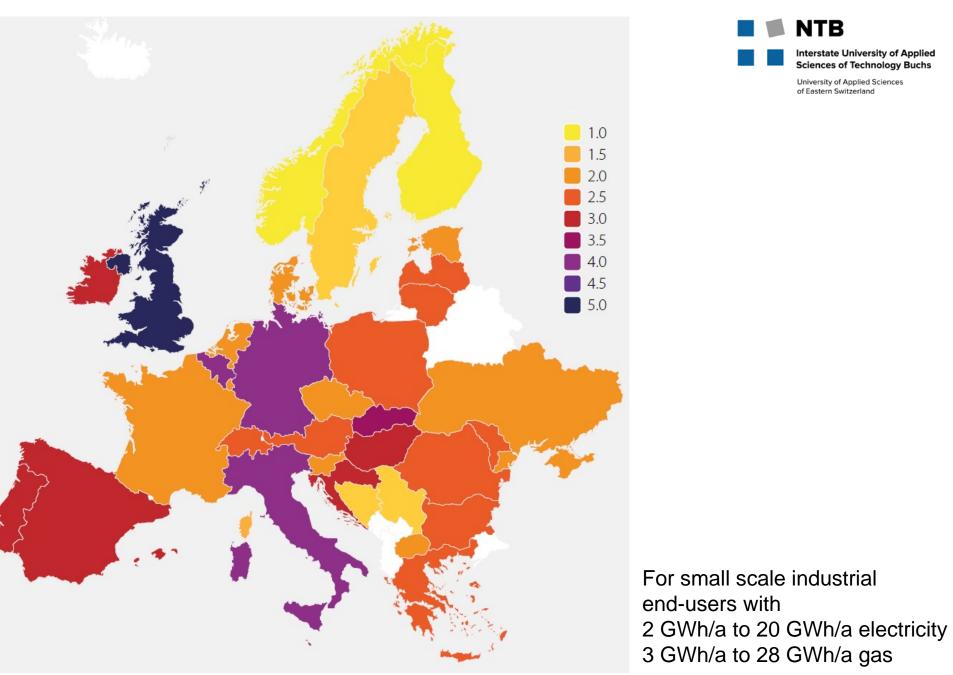
SIEMENS


Large scale high temperature heat pumps for district heating and industrial applications

Electro-thermal energy storage (ETES) from MAN Energy Solutions Schweiz AG

- Trigeneration (heat, cold, electricity), with storage possibilities
- 0 °C to 150 °C, modular from 5 to 100 MW_{th}
- CO₂ (R744) as refrigerant

Decorvet & Jacquemoud: 2nd Conference on High Temperature Heat Pumps, Copenhagen, 2019A2EP Briefing: Advances in industrial heat pumps – 3 September 2020cordin.arpagaus@ost.ch

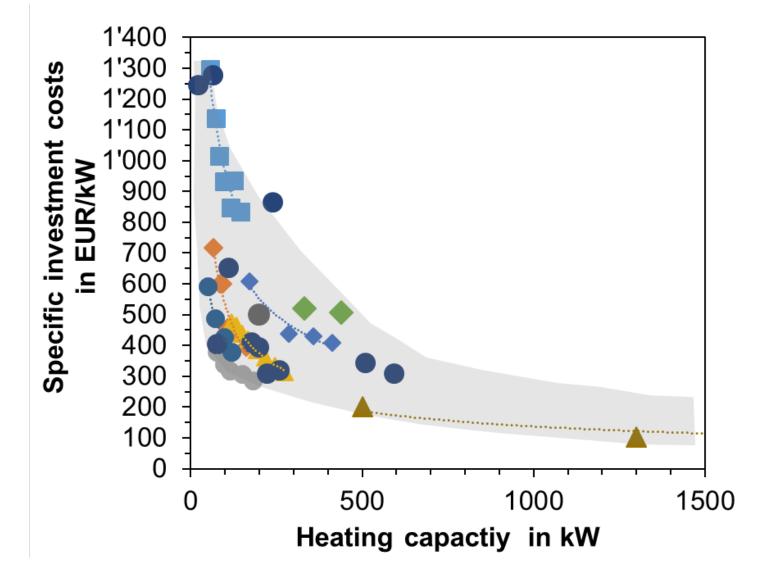

NTB

HOFIMTM Kompressor (High speed Oil Free Integrated Motor compressor)

Market challenges

Electricity to gas price ratio

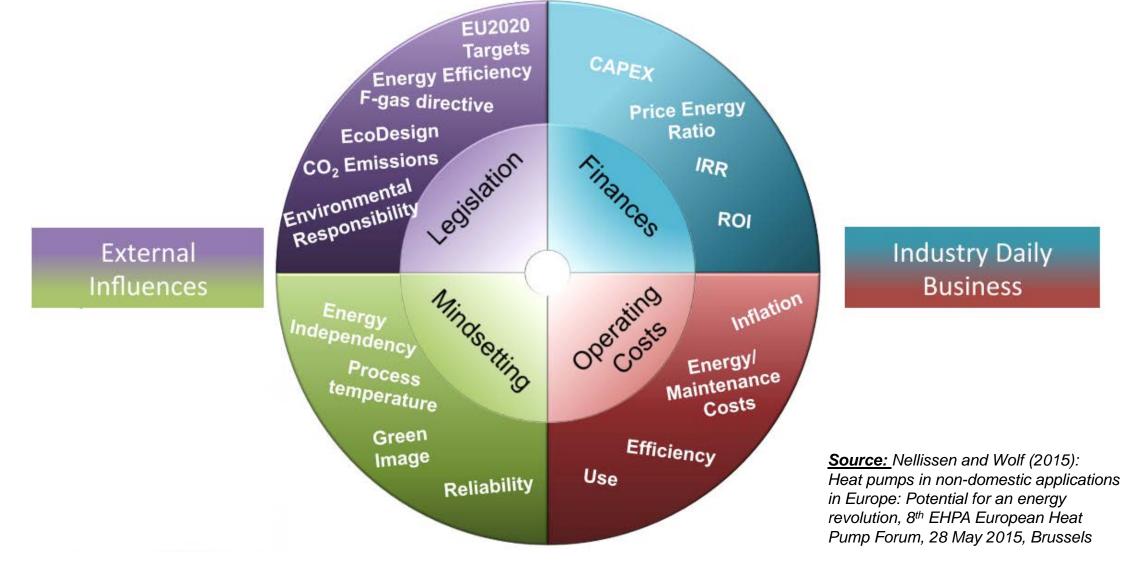
NTB


Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

Market challenges

Specific investment costs (incl. installation) per kW of heating


Own figure based on price information from European heat pump suppliers

Market challenges

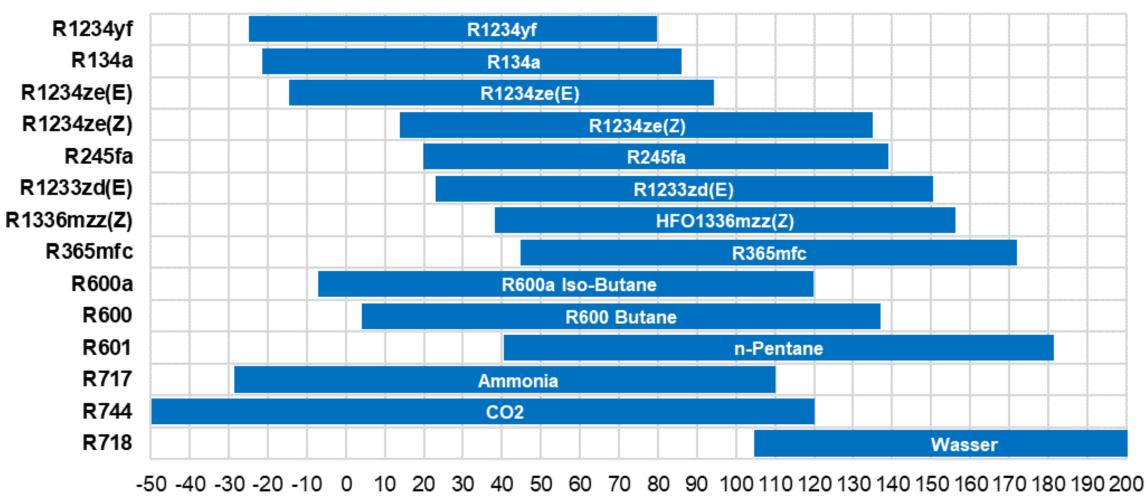
University of Applied Sciences of Eastern Switzerland

Drivers – Decisions factors

Conclusions

Supplier Update – Market Overview

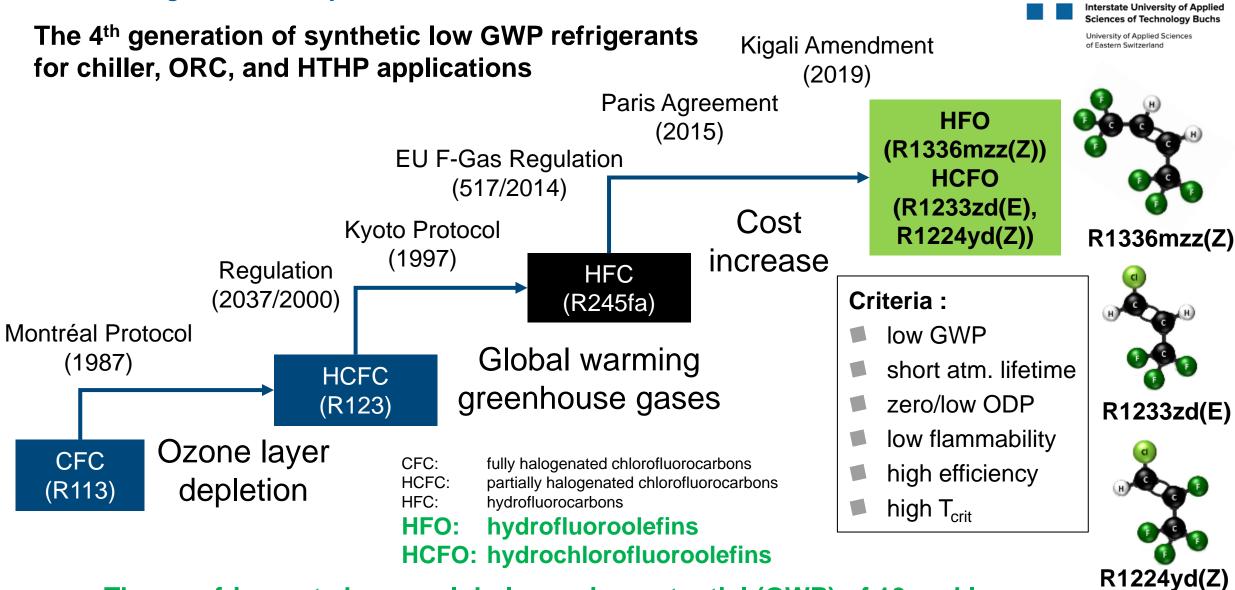
- NTB
 Interstate University of Applied Sciences of Technology Buchs
 University of Applied Sciences of Eastern Switzerland
- Large application potentials for HTWP (hot water, hot air, steam generation)
- Particular in the food, paper and chemical industries, in processes like drying, evaporation, sterilization, and heat recovery
- Technical potential in Europe: 113 PJ process heat between 100 and 150°C
- > 26 HTHPs (compression heat pumps) from 15 manufacturers identified on the market with supply temperatures > 90°C (some > 120°C, pioneers max. 165°C)
- **COPs: 2.4 to 5.8** with temperature lift from 40 to 95 K
- **COP_H = 68.455**· Δ **T**_{Lift}^{-0,76} (H: heating, Δ **T**_{Lift} from heat source to heat sink in K, at 45% 2nd Law efficiency)
- Heating capacity: 20 kW to 20 MW
- Refrigerants: R245fa, R717 (NH₃), R744 (CO₂), R134a, R1234ze(E), R1336mzz(Z)
- Compressors: 1- and 2-shaft **screws**, 2-stage **turbos**, **piston** (parallel)
- Cycles: typically 1-stage, optimization with IHX, parallel compressors, economizer, 2-stage cascade (R134a/R245fa)



University of Applied Sciences of Eastern Switzerland

Suitable Refrigerants

Suitable refrigerants


Range of use of different refrigerants for high temperature heat pumps

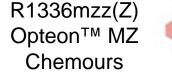
Heat Source and Heat Sink Temperatures in °C

Suitable refrigerants – History and future

These refrigerants have a global warming potential (GWP) of 10 and less

Suitable refrigerants

R1233zd(E) Solstice®zd


Honeywell

Refrigerant manufacturers and products for HTWP

University of Applied Sciences of Eastern Switzerland

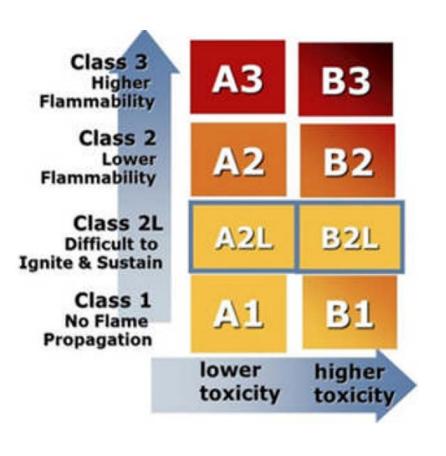
R1224yd(Z) AMOLEA®1224yd AGC Chemicals

SOLVAY asking more from chemistry

Selection criteria

University of Applied Sciences of Eastern Switzerland

Criteria	Required properties					
Thermal suitability	High critical temperature (>150 °C),					
	low critical pressure (<30 bar)					
Environmental	ODP = 0, low GWP (<10), short atmospheric life					
Safety	Non-toxic, non-combustible (safety group A1)					
Efficiency	High COP, low pressure ratio, minimal overheat to prevent					
	fluid compression, high volumetric capacity					
Availability	Available on the market, low price					
Other factors	Good solubility in oil, thermal stability of the refrigerant-oil					
	mixture, lubricating properties at high temperatures, material					
	compatibility with steel, aluminum and copper					


Data sources: Bertinat (1986), Burtscher et al. (2009), Calm (2008), Eisa et al. (1986), Göktun (1995), Helminger et al. (2016), Klein (2009), Kujak (2016), Reißner et al. (2013), Rieberer et al. (2015)

Suitable refrigerants

of Eastern Switzerland

Safety Group Classification according to DIN EN 378-1 (2008) and ASHRAE 34

	propagation	R1233zd(E), DR-14, DR-12, R718, R744 lower			higher
Ξ	no flame propagation	A1	R113, R114, R134a, R236fa, R227ea, R410A, R1336mzz(Z),	B1	R245ca, R245fa
Flammability	lower	A2	R152a, R365mfc, SES36, R1234ze(Z), R1234ze(E), R1234yf	B2	R717
	higher	A3	R290, R1270, R601, R600, R600a, E170	В3	

Refrigerant properties

Туре	Refrigerant	Description	Chemical Formula	T _{crit} [°C]	p _{crit} [bar]	ODP [-]	GWP [-]	SG	NBP [°C]	M [g/mol]	Relative price [-]
CFC	R113	1,1,2-Trichloro-1,2,2-trifluoroethane	CCl ₂ FCCIF ₂	214.0	33.9	0.85	5'820	A1	47.6	187.4	
CFC	R114	1,2-Trichloro-1,1,2,2-tetrafluoroethane	CCIF ₂ CCIF ₂	145.7	32.6	0.58	8'590	A1	3.8	170.9	Prohibited
HCFC	R123	2,2-Dichloro-1,1,1-trifluoroethane	C ₂ HCl ₂ F ₃	183.7	36.6	0.03	79	B1	27.8	152.9	accoding
	R21	Dichlorofluoromethane	CHCl ₂ F	178.5	51.7	0.04	148	B1	8.9	102.9	to Montréal
	R142b	1,1-Dichloro-1-fluoroethane	CH ₃ CCl ₂ F	137.1	40.6	0.065	782	A2	-10.0	100.5	Protocol
	R124	1-Chloro-1,2,2,2-tetrafluoroethane	C ₂ HCIF ₄	126.7	37.2	0.03	527	A1	-12.0	136.5	
X		1,1,1,3,3-Pentafluorobutane	CF ₃ CH ₂ CF ₂ CH ₃	186.9	32.7	0	804	A2	40.2	148.1	8.9
	SES36 ^b	R365mfc/perfluoro-polyether	R365mfc/PFPE (65/35)	177.6	28.5	0	3'126°	A2	35.6	184.5	10.5
,	R245ca	1,1,2,2,3-Pentafluoropropane	CHF ₂ CF ₂ CH ₂ F	174.4	39.3	0	716	n.a	25.1	134.0	n.a.
X	R245fad	1,1,2,2,3-Pentafluoropropane	CHF ₂ CH ₂ CF ₃	154.0	36.5	0	858	B1	14.9	134.0	6.6
HFC	R236fa	1,1,1,3,3,3-Hexafluoropropane	CF ₃ CH ₂ CF ₃	124.9	32.0	0	8'060	A1	-1.4	152.0	10.2
	R152a	1,1-Difluoroethane	CH ₃ CHF ₂	113.3	45.2	0	138	A2	-24.0	66.1	n.a.
	R227ea	1,1,1,2,3,3,3-Heptafluoropropane	CF ₃ CHFCF ₃	101.8	29.3	0	3'350	A1	-15.6	170.0	6.9
	R134a	1,1,1,2-Tetrafluoroethane	CH ₂ FCF ₃	101.1	40.6	0	1'300	A1	-26.1	102.0	1.2
	R410A	R32/R125 (50/50 mixture)	CH ₂ F ₂ /CHF ₂ CF ₃	72.6	49.0	0	2'088	A1	-51.5	72.6	2.9
	R1336mzz(Z) ^e	1,1,1,4,4,4-Hexafluoro-2-butene	CF ₃ CH=CHCF ₃ (Z)	171.3	29.0	0	2	A1	33.4	164.1	n.a.
×	R1234ze(Z)	cis-1,3,3,3-Tetrafluoro-1-propene	CF ₃ CH=CHF(Z)	150.1	35.3	0	<1	A2L ^f	9.8	114.0	n.a.
HFO	R1336mzz(E) ^g	trans-1,1,1,4,4,4,-Hexafluoro-2-butene	$CF_3CH=CHCF_3(E)$	137.7	31.5	0	18	A1	7.5	164.1	n.a.
	R1234ze(E)	trans-1,3,3,3-Tetrafluoro-1-propene	CF ₃ CH=CHF(E)	109.4	36.4	0	<1	A2L	-19.0	114.0	5.6
	R1234yf	2,3,3,3-Tetrafluoro-1-propene	CF ₃ CF=CH ₂	94.7	33.8	0	<1	A2L	-29.5	114.0	13.8
нсго	R1233zd(E) ^h	1-chloro-3,3,3-Trifluoro-propene	CF ₃ CH=CHCI(E)	166.5	36.2	0.00034	1	A1	18.0	130.5	6.3
	Z R1224yd(Z) ⁱ	1-chloro-2,3,3,3-Tetrafluoro-propene	CF ₃ CF=CHCI(Z)	155.5	33.3	0.00012	<1	A1	14.0	148.5	n.a.
	R601	Pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	196.6	33.7	0	5	A3	36.1	72.2	4.9
	R600	Butane	CH ₃ CH ₂ CH ₂ CH ₃	152.0	38.0	0	4	A3	-0.5	58.1	1.8
НС	R600a	Isobutane	CH(CH ₃) ₂ CH ₃	134.7	36.3	0	3	A3	-11.8	58.1	1.0
	R290	Propane	CH ₃ CH ₂ CH ₃	96.7	42.5	0	3	A3	-42.1	44.1	1.1
	R1270	Propene	CH ₃ CH ₌ CH ₂	91.1	45.6	0	2	A3	-47.6	42.1	1.0
CF6	Novec 649 ^j	Dodecafluoro-2-methyl-3-pentanone	CF ₃ CF ₂ C(O)CF(CF ₃) ₂	168.7	18.8	0	<1	n.a.	49.0	316.0	6.8
Ether	E170	Dimethyl ether	CH ₃ OCH ₃	127.2	53.4	0	1	A3	-24.8	46.1	39.0
	R718	Water	H ₂ O	373.9	220.6	0	0	A1	100.0	18.0	5.6 ^k
Natural	R717	Ammonia	NH ₃	132.3	113.3	0	0	B2L	-33.3	17.0	27
	R744	Carbon dioxide	CO ₂	31.0	73.8	0	1	A1	-78.5	44.0	1.0

Interstate University of Applied

Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

excluded

HFCs for comparison

CFC = Chlorofluorocarbons, HCFC = Hydrochlorofluorocarbons, HFC = Hydrofluorocarbons, HFO = Hydrofluoroolefins, HCFO = Hydrochlorofluoroolefins, HC = Hydrocarbons, T_{crit} = critical temperature, p_{crit} = critical pressure, ODP = Ozone Depletion Potenial (R11=1.0, UNEP, 2017), GWP₁₀₀ = Global Warming Potential (CO₂=1.0, 100 years, EU F-Gas Regulation 517/2014, Myhre et al., 2013), SG = Safety Group (DIN EN 378-1, 2008, ASHRAE 34), NBP = Boiling point at 1.013 bar, *M* = Molecular weight, Relativer price per kg refrigerant compared to CO₂ of 9 Euro/kg (based on a 10 kg vessel, October 2017), n.a. = price not yet available but close to market, Solkane®365mfc from Solvay, ^bSolkatherm®SES36 from Solvay, ^cLewandowski et al. (2010), ^dR245fa from Linde or Honeywell (Genetron® 245fa).^eOpteon[™] MZ from Chemours, ^fFukuda et al. (2014), ^gJuhasz (2017), ^hSolstice®zd from Honeywell, ⁱAMOLEA® 1224yd from AGC Chemicals, ^jNovec[™] 649 from 3M, ^kMolecular biological quality

R1224yd(Z)

University of Applied Sciences of Eastern Switzerland

Properties of suitable HFO and HCFO refrigerants for HTHPs

GWP₁₀₀ ODP Lifetime NBP **p**_{crit} SG Refrigerant **Brand (manufacturer)** [°]C1 I°C1 [bar] [-] [-] [days] R1336mzz(Z) 29.0 33.4 Opteon[™] MZ (Chemours) 171.3 **2**^a **22**^a 0 **A1** Tested R1234ze(Z)^b Not yet available 150.1 35.3 0 10^a, 18^b A2L 9.8 <1^a at NTB ~14^f,26^a, 0.00034^d. Solstice®zd (Honeywell) R1233zd(E) 165.6 35.7 1^{a,} <5^e **A1** 18.0 Buchs **36**^e, **40.4**^d 0.00030^e Forane®HTS 1233zd (ARKEMA) 155.5 33.3 0.00023^c R1224yd(Z) AMOLEA®1224yd (AGC Chemicals) 0.88^c 20^c **A1** 14.0 R365mfc Solkane®365mfc (Solvay) 186.9 32.7 804^a 8.7 years^a A2 40.2 0 R245fa Genetron® 245fa (Honeywell) 154.0 36.5 858^a 14.9 0 7.7 years^a **B1** HFO **HCFO**

References:

R1336mzz(Z)

T_{crit} and p_{crit} (EES F-Chart Software, V10.643, 2019), ODP basis R11=1.0 (UNEP, 2017), GWP₁₀₀ (100-year time horizon, CO₂=1.0), SG: Safety group classification (ASHRAE 34, 2016), ^aMyhre et al. (2013, IPCC 5th assessment report), ^bFukuda et al. (2014), ^cTokuhashi et al. (2018), ^dPatten and Wuebbles (2010), ^eSulbaek Andersen et al. (2018) (3D global model), ^fAndersen et al. (2015)

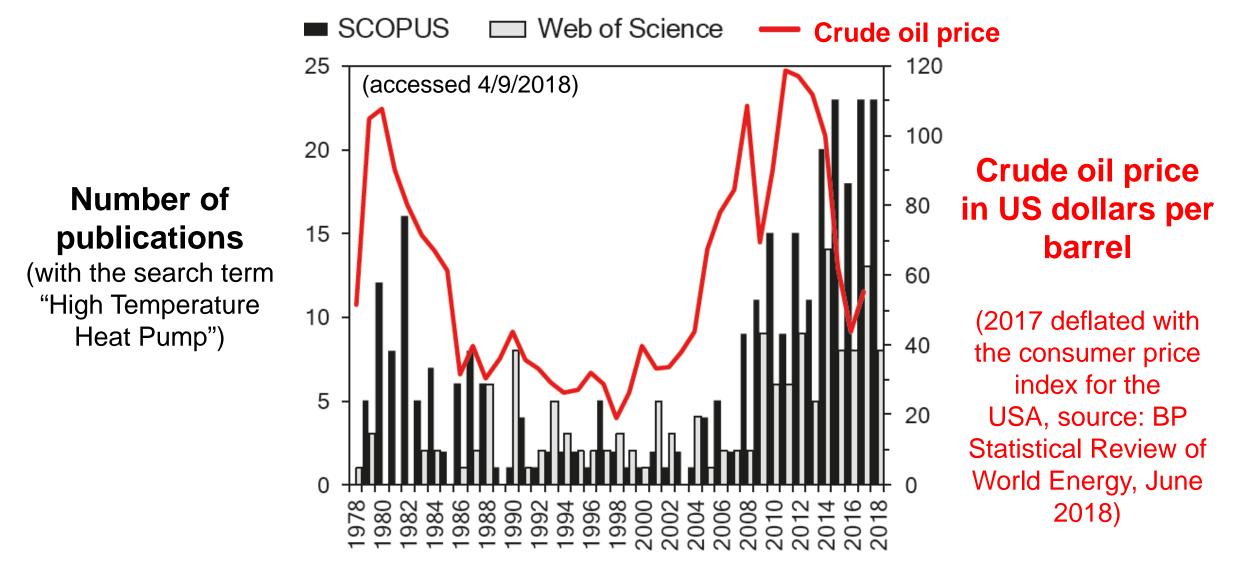
R1233zd(E)

R1234ze(Z)

of Eastern Switzerland

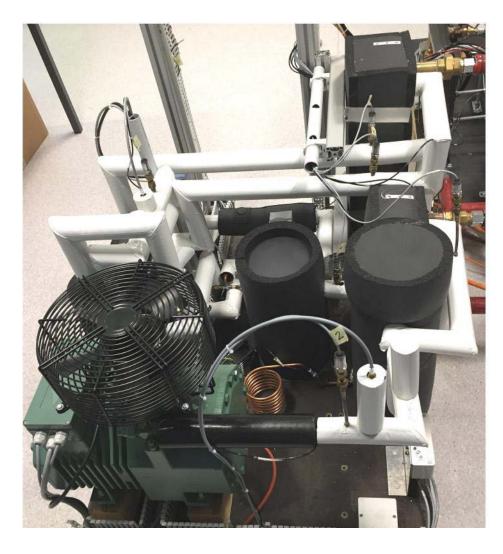
Research Gaps in High Temperature Heat Pumps

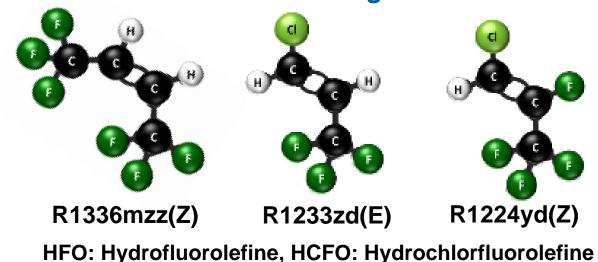
Testing of new environmentally friendly synthetic refrigerants for HTHPs (e.g. HFOs and HCFOs)


- Application of natural refrigerants, such as hydrocarbons (R600, R601), CO₂ or water
- Extending heat source/sink to higher temperatures
- Improving heat pump efficiency (COP) (e.g. by multi-stage cycles, oil-free compressors)
- Development of temperature-resistant components (e.g. valves, compressors)
- New control strategies for higher temperatures
- Scale-up of functional models to industrial scale

Research Status

of Eastern Switzerland

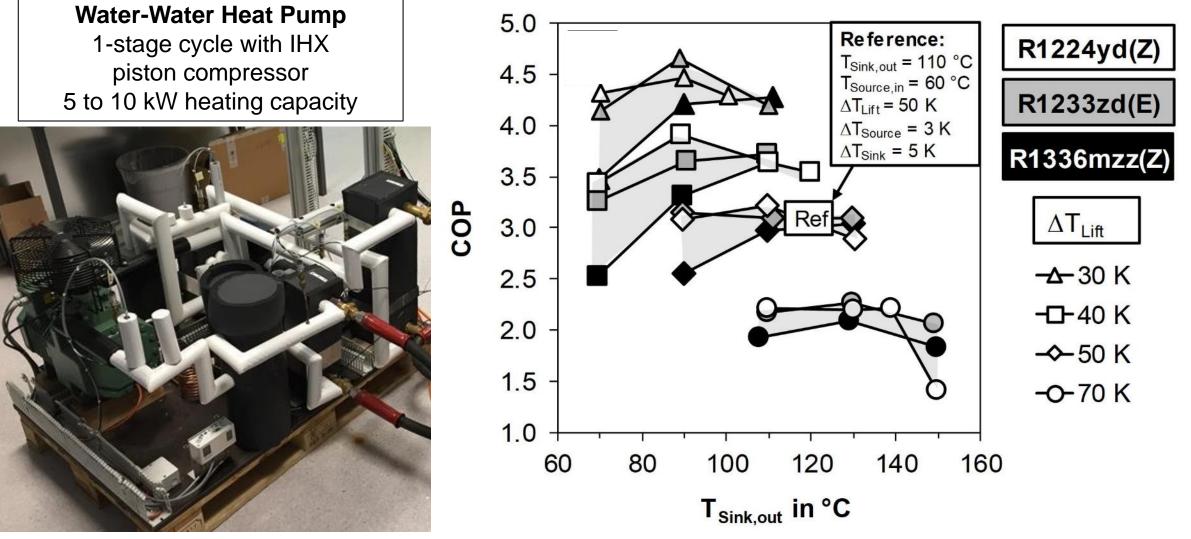

Number of publications – High Temperature Heat Pumps


NTB Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences

of Eastern Switzerland

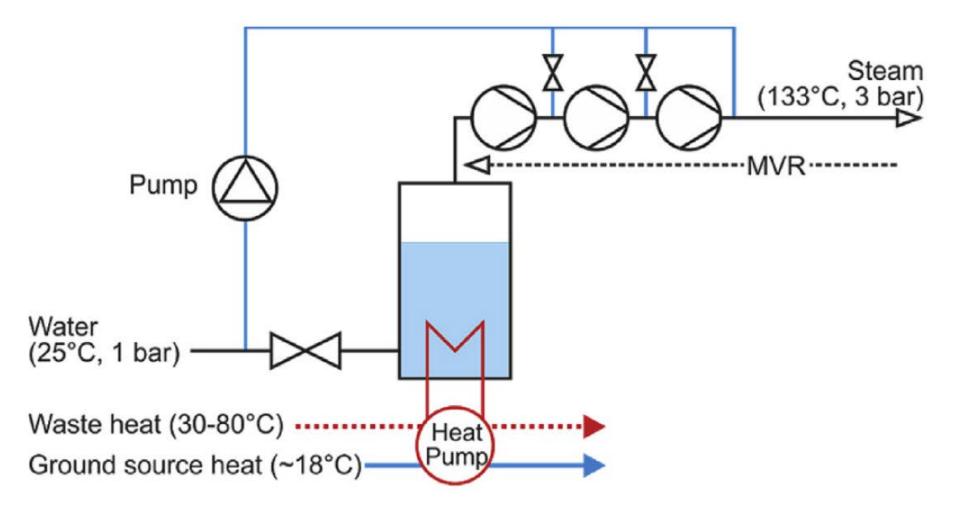
Laboratory HTHP at NTB Buchs with 80 °C to 150 °C supply temperature

Investigation of different synthetic HFO/HCFO refrigerants


Properties:

- Iow GWP (global warming potential)
- zero/low ODP (ozone depletion potential)
- short atm. Lifetime
- Non-flammable
- Non-toxic

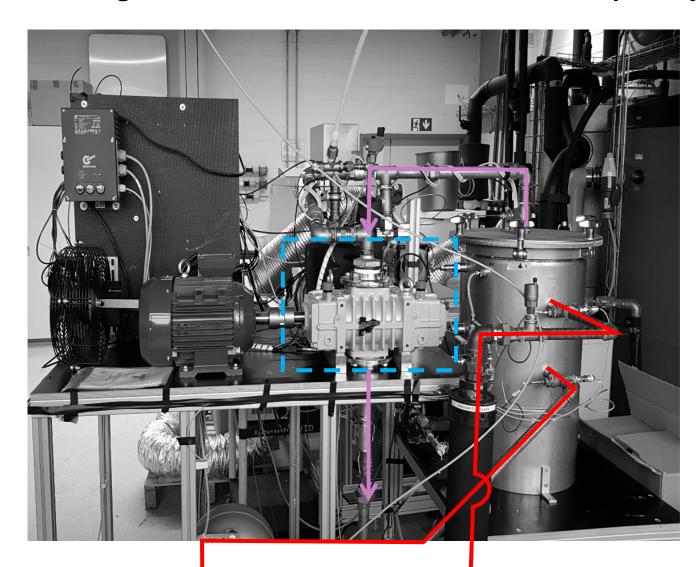
Refrigerant	ODP	GWP ₁₀₀	SG		
R1336mzz(Z)	0	2	A1		
R1233zd(E)	0.00034	1	A1		
R1224yd(Z)	0.00023	0.88	A1		

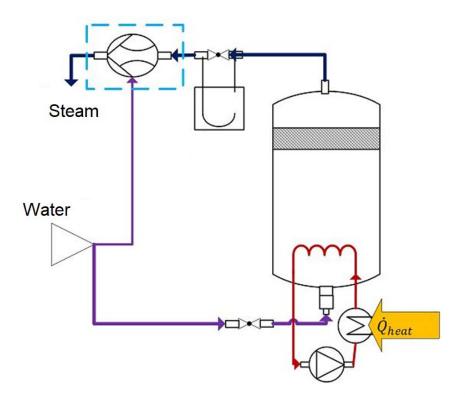

Laboratory scale HTHP at NTB Buchs to research new low GWP HFO and HCFO refrigerants R1224yd(Z), R1233zd(E), and R1366mzz(Z)

A2EP Briefing: Advances in industrial heat pumps – 3 September 2020

Steam generation heat pumps

New solutions for steam generation


Bless et al. (2017): Theoretical analysis of steam generation methods - Energy, CO₂ emission, and cost analysis, Energy, 129, 114-121


of Eastern Switzerland

Steam generation heat pumps

Steam generation from waste heat – lab-scale prototype at NTB

- Heat pump with open water circuit
- Proof of concept
- Produces 34.2 kg/h steam at 115 °C (38.8 kg/h simulated)

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

Research projects in the field of HTHPs with supply temperatures > 100 °C

of Eastern Switzerland

Organization, project partners, country, heat pump cycle, compressor type, refrigerant, heating capacity, and sorted by the heat supply temperature

Organisation, Project partners	Country	Cycle	Compressor	Refrigerant	Source (blue) and supply (red) temperatures [°C]	Heating capacity [kW]	Literature references
					20 40 60 80 100 120 140 160		
Austrian Institute of Technology, Vienna, Chemours, Bitzer		1-stage with IHX	piston	R1336mzz(Z)		12	Helminger et al. (2016)
Austrian Institute of Technology, Chemours, Bitzer, Austria		1-stage	piston	R1336mzz(Z)		12	Fleckl et al. (2015)
NTB University of Applied Sciences of Technology Buchs, SCCER EIP, Switzerland	-	1-stage with IHX	piston	R1233zd(E) R1224yd(Z) R1336mzz(Z)		3 to 10	Arpagaus et al. (2018, 2019)
PACO, University Lyon, EDF Electricité de France		flash tank	twin screw	R718 (H ₂ O)		300	Chamoun et al. (2014, 2013, 2012)
Institute of Air Handling and Refrigeration, Dresden, Germany		1-stage	piston	HT 125		12	Noack (2016)
ISTENER Research Group, Universitat Jaume I, Expander Tech (Rank), Spain	*	1-stage with IHX	scroll	R245fa		11 to 18	Mateu-Royo et al. (2019)
Friedrich-Alexander Universität Erlangen- Nürnberg, Siemens, Germany		1-stage with IHX	piston	LG6		10	Reißner (2015), Reißner et al. (2013)
Alter ECO, EDF Electricité de France		IHX and subcooler	twin scroll	ECO3 (R245fa)		50 to 200	Bobelin et al. (2012), IEA (2014)
Tokyo Electric Power Company, Japan		1-stage	screw	R601 (pentane)		150 to 400	Yamazaki and Kubo (1985)
Austrian Institute of Technology, Edtmayer, Ochsner, Austria		economizer	screw	ÖKO1 (R245fa)		250 to 400	Wilk et al. (2016)

of Eastern Switzerland

Organization, project partners, country, heat pump cycle, compressor type, refrigerant, heating capacity, and sorted by the heat supply temperature

Organisation, Project partners	Country	Cycle	Compressor	Refrigerant	Source (blue) and supply (red) temperatures [°C] 20 40 60 80 100 120 140 160	Heating capacity [kW]	Literature references
Tianjin University, China	*0	1-stage	scroll	BY-5		16 to 19	Zhang et al. (2017)
Kyushu University, Fukuoka, Japan		1-stage	twin rotary	R1234ze(Z)		1.8	Fukuda et al. (2014)
ECN, SmurfitKappa, IBK, Bronswerk, The Netherlands		IHX and subcooler	piston	R600 (butane)		160	Wemmers et al. (2017)
Korea Institute of Energy Research, Daejeon, Korea		1-stage with steam generation	piston	R245fa/ R718 (H₂O)		20 to 40	Lee et al. (2017)
GREE Electric Appliances, Zhuhai, China	*1	1-stage	scroll	R245fa		6 to 12	Huang et al. (2017)
Norwegian University of Science and Technology, SINTEF		2-stage cascade	piston	R600/R290 (butane/propane)		20 to 30	Bamigbetan et al. (2017)
TU Graz, Austria		1-stage with IHX	piston	R600		20 to 40	Moisi et al. (2017)
Tianjin University, China	*1	1-stage	double scroll	BY-4		44 to 141	Yu et al. (2014)
EDF Electricité de France, Johnson Controls		IHX and economizer	twin screw, centrifugal turbo	R245fa		300 to 500 900 to 1'200	Assaf et al. (2010), IEA (2012, 2014), Peureux et al. (2014)

Conclusions

Research Status

- Worldwide high research activity on HTHPs
- At least 19 experimental research projects with heat supply temperatures > 100 °C (up to max. 160 °C)
- Experimental research mainly in Austria, France, Germany, Norway, the Netherlands, Switzerland, Spain, Japan, Korea and China
- Heating capacity: lab scale 12 kW, larger prototypes >100 kW
- COPs (at 120°C supply temperature): 5.7 to 6.5 (30 K temperature lift), 2.2 to 2.8 (70 K)
- Trend towards natural refrigerants R600 (butane), R601 (pentane), R744 (CO₂), R718 (H₂O) and synthetic HFOs with low GWP < 10 (R1336mzz(Z), R1233zd(E), R1224yd(Z), R1234ze(Z))</p>
- Cycles: mostly 1-stage, optimization with IHX and/or Economizer cycle with intermediate injection into the compressor, mostly piston compressors in lab-scale
- R1336mzz(Z), R1233zd(E) and R1224yd(Z) successfully tested in HTHP at NTB Buchs (drop-in tests)
- Integration of an IHX increased COP (+15 to 47%) and heating capacity significantly
- Operation demonstrated at 30 to 80°C heat source and 70 to 150°C heat sink temperatures (30 to 70 K temperature lifts) for possible application of waste heat recovery, steam generation or drying

Interstate University of Applied Sciences of Technology Buchs University of Applied Sciences

of Eastern Switzerland

University of Applied Sciences of Eastern Switzerland

Application examples in food & steam generation

Potential applications

HOT WATER

HOT AIR

STEAM

- Hot water generation for washing and cleaning processes (e.g. food, meat, bottles, wine tanks, product washing) in combination with cooling generation
- Hot air generation and air preheating for drying processes (e.g. starch, pet food) by waste heat recovery
- Process steam generation (i.e. low pressure steam) for the sterilization and pasteurization of food (e.g. milk, fruit juice) using cooling water or humid exhaust air

Temperature levels of industrial processes and HP technology readiness

University of Applied Sciences of Eastern Switzerland

						remperature										
Sector	Process	2	0	40	60)	80	10	0 1	20	140	1	60	180	20	0
	Drying															
	Evaporation															_
	Pasteurization															_
	Sterilization															_
	Boiling															
Food &	Distillation															
beverages	Blanching															_
	Scalding															
	Concentration															
	Tempering															_
	Smoking															

Technology Readiness Level (TRL):

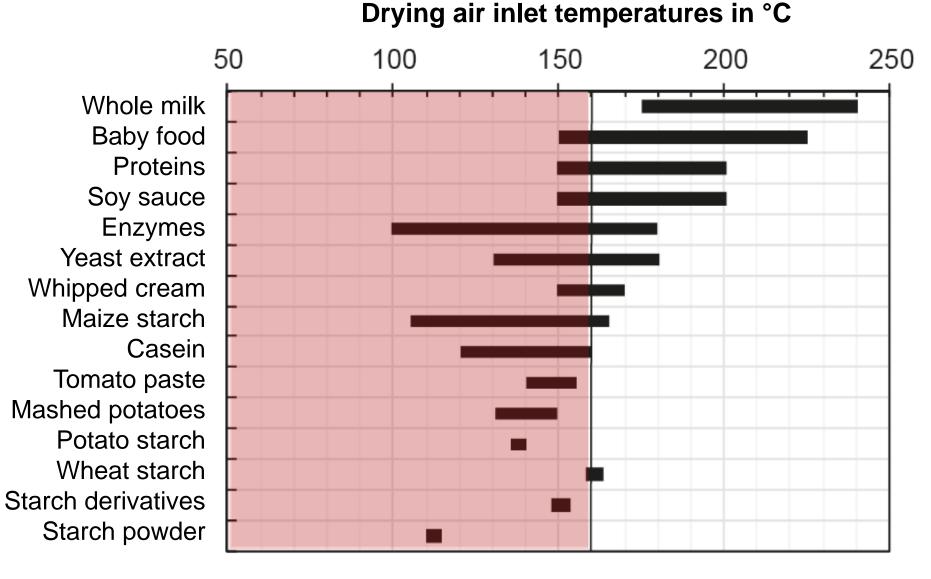
conventional HP < 80°C, established in industry commercial available HP 80 - 100°C, key technology prototype status, technology development, HTHP 100 - 140°C laboratory research, functional models, proof of concept, VHTHP > 140°C

Temperature

Application examples of industrial heat pumps

Temperature levels of industrial processes and HP technology readiness

	Temperature Process 20 40 60 80 100 120 140 160 180 200												
Sector	Process	20 	40	60 	80 	10	001	20 1 	40	160 	180) 200 	[°C]
	Drying		+										90 -24
Dener	Boiling												110 - 18
Paper	Bleaching												40 - 15
	De-inking												50 - 7
	Drying												40 - 25
	Evaporation												40 - 17
	Pasteurization												60 - 15
	Sterilization												100 - 14
Food &	Boiling												70 - 12
	Distillation												40 - 10
beverages	Blanching												60 - 9
	Scalding												50 - 9
	Concentration												60 - 8
	Tempering												40 - 8
	Smoking												20 - 8
	Destillation												100 - 30
	Compression												110 - 17
Chemicals	Thermoforming												130 - 16
Chemicais	Concentration												120 - 14
	Boiling												80 - 11
	Bioreactions												20 - 6
Automotive	Resin molding												70 - 13
	Drying												60 - 20
	Pickling												20 - 10
	Degreasing												20 - 10
Metal	Electroplating												30 - 9
	Phosphating												30 - 9
	Chromating												20 - 8
	Purging												40 - 7


	Temperature Process 20 40 60 80 100 120 140 160 180 200																
Sector	Process	20	4	.0 	60) 8	30 	10	0 1	20	140) 1(50 	180) 2(00	[°C]
	Injection modling																90 - 300
Plastic	Pellets drying																40 - 150
	Preheating																50 - 70
Mechanical	Surface treatment																20 - 120
engineering	Cleaning																40 -90
	Coloring																40 - 160
Textiles	Drying																60 - 130
rexules	Washing																40 - 110
	Bleaching																40 - 100
	Glueing																120 - 180
	Pressing																120 - 170
	Drying																40 - 150
Wood	Steaming																70 - 100
	Cocking																80 - 90
	Staining																50 - 80
	Pickling																40 - 70
	Hot water																20 - 110
Several	Preheating																20 - 100
sectors	Washing/Cleaning																30 - 90
	Space heating																20 - 80
	Readiness Level (1 onventional HP < 80° ommercial available H ototype status, techn poratory research, fu	C, e IP 8 olog	sta 30 - 3y (- 1(de\)0° /elo	C, I opm	key ner	⁄teo nt, F	chn ITH	olo IP 1	00				P >	• 14	0°C

Data sources: Brunner et al. (2007), Hartl et al. (2015), IEA (2014), Kalogirou (2003), Lambauer et al. (2012), Lauterbach et al. (2012), Noack (2016), Ochsner (2015), Rieberer et al. (2015), Watanabe (2013), Weiss (2007, 2005), Wolf et al. (2014)

A2EP Briefing: Advances in industrial heat pumps – 3 September 2020

Drying temperatures of various foodstuffs

Application examples of industrial heat pumps

Food and beverage industry

- Hot water and steam for sterilization of food and beverages
- Process heat for concentration and pasteurization of milk and juices
- Hot water and steam for washing and sterilizing bottles and wine tanks during bottling processes
- Steam and hot water for slaughterhouse cleaning
- Process heat for pasteurization and hot water in cheese factories

Drying processes (air heating)

- Brick drying: Air preheating to 120 °C by means of moist exhaust air (70 °C, 50% r.h.)
- **Wood drying:** Air heating to 120 to 150 °C with moist exhaust air
- **Starch drying:** Air preheating for steam generation 160 °C
- **Drying of animal fodder:** Low pressure steam for chamber dryer
- **Spray drying:** Air preheating for milk powder production
- Paper drying: Low-pressure steam 130 °C using cooling water (60°C) or humid exhaust air (76 °C, 56 % r.h.) as heat source

Application examples of industrial heat pumps

More application examples

- District heating networks: Hot water production up to 120 °C
- Hospitals: Steam 125 °C for autoclaves, sterilization and laundry drying

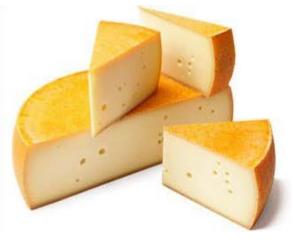
PET bottle industry: Process heat between 100 and 150 °C for

Sugar industry: Process heat between 80 and 150 °C for the processing of sugar beets, steam generation at 138 °C for the production of 90 °C feed water

injection molding of plastic preforms

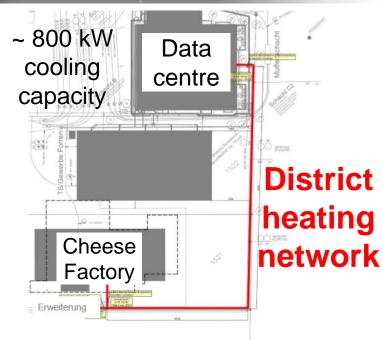
Application examples of industrial heat pumps

More application examples


- Breweries: Process heat of around 100 °C for the brewing process (e.g. mashing, lautering, wort boiling)
- Milk processing: Milk pasteurization (HT 100 to 120 °C), sterilization (115 to 135 °C) and UHT (135 to 150 °C), spray drying of milk powder (preheating the drying air to 120 to 150 °C)
- Chemical industry: Steam 120 °C for alcohol distillation using the waste heat of the cooling tower or the condensation heat of the distillation column (65 °C)
- Wellness sauna: CO₂ heat pumps for different temperature levels up to 120 °C

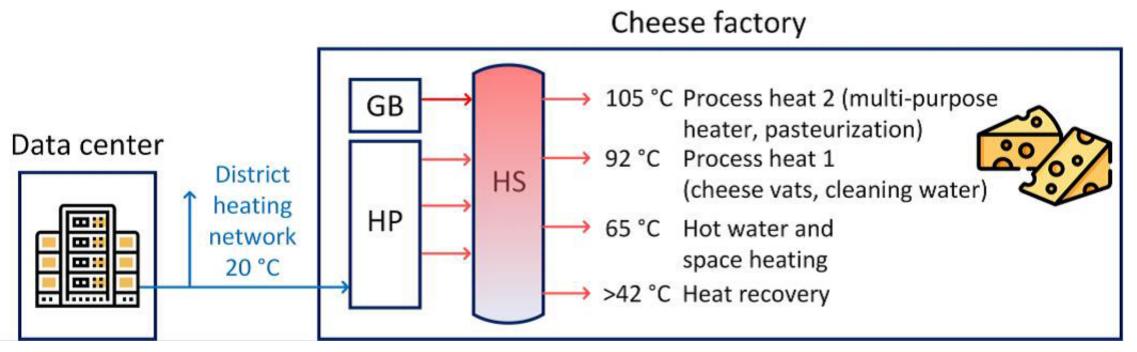
Cheese Factory in Gais Appenzell

University of Applied Sciences of Eastern Switzerland



Data Centre

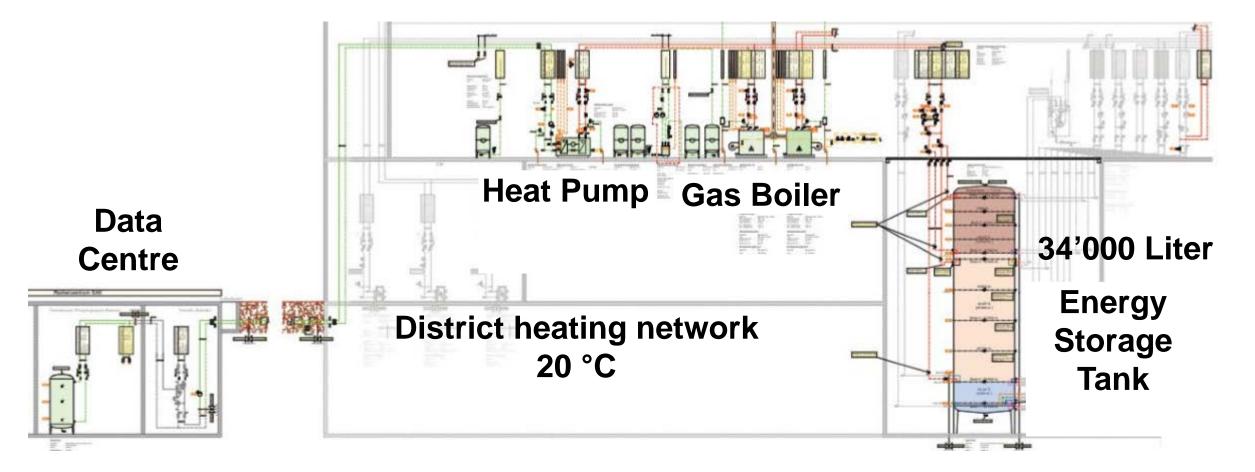
Waste heat from server rooms 16 to 20 °C A2EP Briefing: Advances in industrial heat pumps – 3 September 2020



Cheese Factory

- Energy demand ~1'800 MWh/a
- ~10 Mio. liters of milk per year
- ~300 tons of cheese per year

Cheese Factory in Gais Appenzell


(GB: gas boiler, HP: heat pump, HS: stratified hot water storage tank)

- Waste heat from the server cooling of the neighboring data center is fed into a district heating network at approx. 20 °C.
- The cheese factory uses this waste heat as heat source in a high temperature heat pump to generate process heat for the cheese production.

of Eastern Switzerland

Cheese Factory in Gais Appenzell

Source: Amstein + Walthert

Cheese Factory in Gais Appenzell

- IWWHS 570 ER6c2
- ~520kW
- 2-stage screw compressor

Economizer cycle

- Refrigerant mass flow ↑
- Discharge temp.
- Subcooling ↑ (COP ↑)

R1234ze(E)

(130 kg, safety group: A2L, mildly flammable, special measures for fire protection and escape routes)

 2020/21 first operation (using waste heat from data centre)

Performance data (W18-14/W82-92)

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

Heat

Pumping

VOL.37 NO 2/2019

Part load (%)	100	75	50
Effective part load (%)	100	81	62
Condenser heating capacity (kW)	520	419	321
Condenser water flow rate (m ³ /h)	44.7	36.0	27.6
Temperature difference condenser (K)	10.0	10.0	10.0
Evaporator capacity (kW)	338	264	195
Evaporator water flow rate (m ³ /h)	82.7	82.7	82.7
Temperature difference evaporator (K)	3.5	2.7	2.0
Compressor power (kW)	182	155	126
COP _H (-)	2.85	2.70	2.55

Chocolate Factory in Flawil

(A)

University of Applied Sciences of Eastern Switzerland

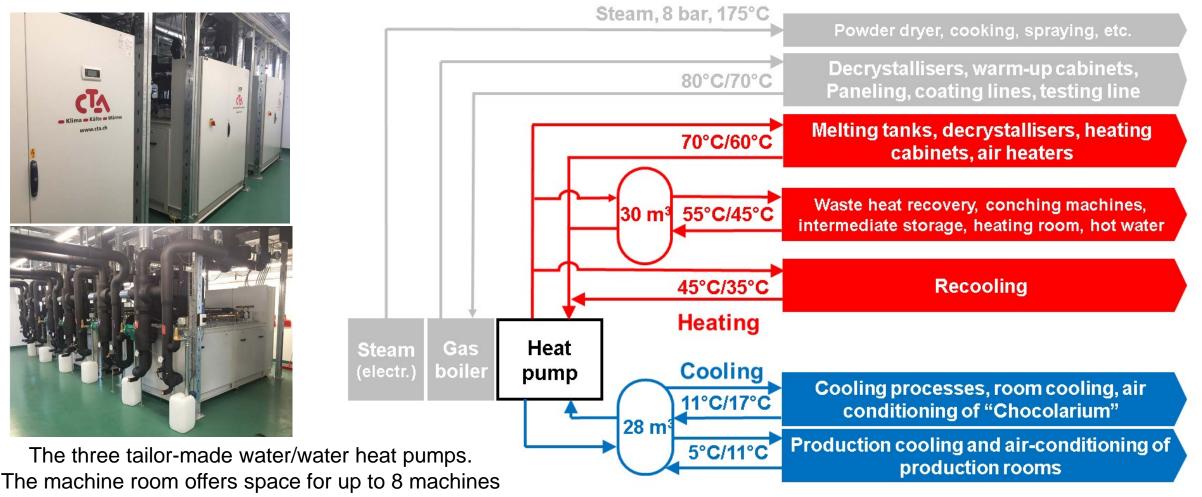
HP manufa	acturer: CTA AG
Contractor	: Seiz AG
Consultant	t: Carnotech AG

Temperature range from 5 to 70 °C Space for 8 heat pumps à 220 kW <u>Application: Cooling and heating of</u> chocolate conching machines Savings fossil fuels = 2'590 MWh Savings CO_2 emissions = 30% (510 t/a)

		Cooling	Heating
	Cooling capacity	222.6 kW	183.7 kW
	Electrical power	70.4 kW	96.8 kW
1000	Heat source in/out	5/11°C	11/17°C
	Heating capacity	289.8 kW	276.2 kW
100	COP	4.12	2.85
1	Hot water in/out	35/45°C	60/70°C
	Refrigerant	R-1234ze	R-1234ze
	Piston compressors	4	4
	No. of cooling cycles	2	2

Sources: www.maestrani-schokolade.ch, www.cta.ch

A2EP Briefing: Advances in industrial heat pumps – 3 September 2020


Chocolate Factory in Flawil

University of Applied Sciences of Eastern Switzerland

with a final cooling capacity of 2 MW.

GVS Schaffhausen, Landi – Beverages

Heat sink: 80 to 95 °C

- process water for disinfection of beverage filling plants and wine tanks
- space heating of storage rooms
- district heating of production site
 Heat source: 37 °C
- waste heat from refrigeration (cooling of storage rooms)

University of Applied Sciences Switzerland

Heat pump type:ISWHHeating capacity:63 kVCooling capacity:48 kVCompressor:ScrewCOP Heating:4,2EER Cooling:3,2Year of installation:2017

ISWHS 60 ER3 63 kW 48 kW Screw, ÖKO 1 (R245fa) 4,2 3,2 2017

Source: Ochsner, Ennovatis Schweiz AG

A2EP Briefing: Advances in industrial heat pumps – 3 September 2020

of Eastern Switzerland

Nutrex – Vinegar fermentation and pasteurization

Applications:

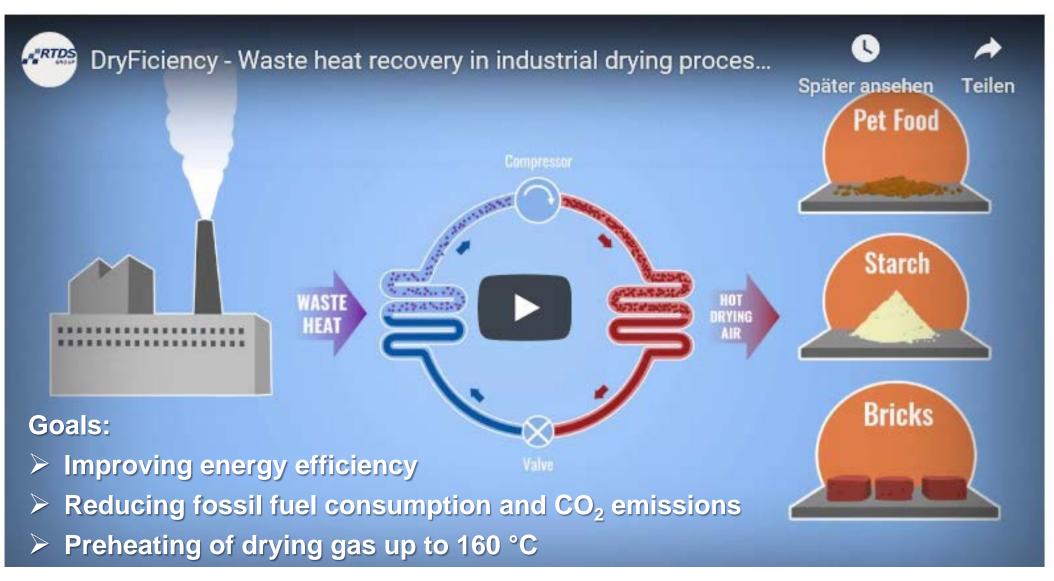
- <u>Cooling:</u> Vinegar fermentation process over 10 days at 30°C
- <u>Heating:</u> Vinegar pasteurization >70°C to obtain a non-perishable food
- Cooling capacity: 136 kW
- Heating capacity: 194 kW, COP 3,4
- Savings CO₂ emissions: ~310 t/a
- Savings fuel: up to 65'000 L/a

Left: Production of the vinegar/fermentation Right: Heat pump in machine room Source: Viessmann/Nutrex

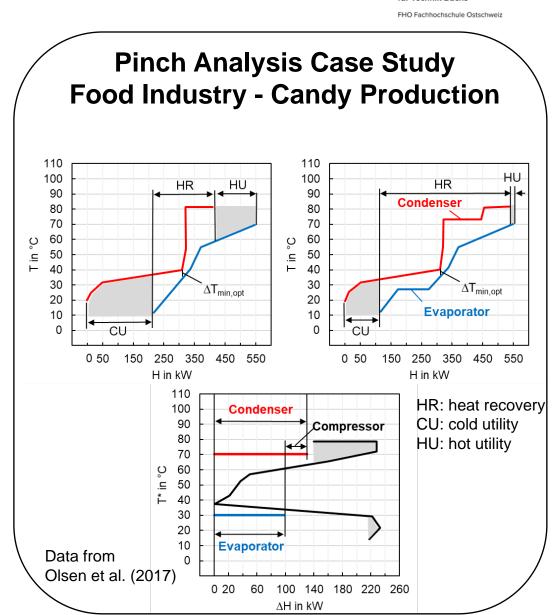
By VIESMANN climate of innovation

Source: EHPA (2017): Large scale heat pumps in Europe

Slaughterhouse Zurich – Meat Production


University of Applied Sciences of Eastern Switzerland

	Hot water for cleaning processes up to
Process applied	90°C and space heating
Location	Zurich (in the middle of the city, historical
	building)
Year of installation	2011
HP manufacturer	Thermea, Germany
Contractor	ewz Energiedienstleistungen
Consultant	City of Zurich
Refrigerant	CO ₂ (R744)
Compressor	Screw
Heating/cooling	800/564
capacity (kW)	000/304
	Waste heat from refrigeration processes
Heat source	(closed water loop with storage tank) and
	waste heat from compressed air generation
Heat source (°C) in/out	20/14
Heat sink (°C) in/out	Water, 30/90
Efficiency (COP)	3.4
Savings CO ₂ emissions	30% (510 t/a), saving of 2'590 MWh fossil fuels


Heat recovery in drying processes

Heat pump integration: questions to be answered

- 1. Are there processes with heat demand?
- 2. Are there processes with cooling demand?
- 3. What is the required heat supply temperature?
- 4. Are sufficient **heat sources** available for high heat supply temperatures?
- 5. Is the **heat source** approx. in the same order of magnitude as the **heat demand**?
- 6. Is the heat source available **at about the same time** as the heat sink?
- 7. What is the heat recovery potential?
- 8. What is the **operation profile** of the heat pump (part-load, fluctuations)?

nterstaatliche Hochschul ür Technik Buchs

Industrial heat pumps

Summary

- Application potential for industrial heat pumps is large: hot water, hot air, and process steam
- Numerous industrial heat pumps from various manufacturers are available on the market: supply temperatures > 90°C (some > 120°C, up to max. 165°C), rotational heat pump, HTHP on a large scale (MW capacity range)
- COP (coefficient of performance) of about 4.0 at 50 K temperature lift, 45% Carnot efficiency, heating and cooling application COP_{H+K}= 2 x COP_H 1
- Different circuits: mostly 1-stage, optimizations with IHX and Economizer with intermediate injection into the compressor, parallel connection of compressors, cascade (R134a/R245fa), compressors: screws, 2-stage turbos, reciprocating piston (parallel)
- Heat pump integration varies greatly from case to case: usually with storage tank and often bivalent (e.g. HP for base load, gas boiler for peak coverage and redundancy)
- High research activity worldwide: Supply temperatures > 100 °C, mainly DE, AT, CH, FR, NO, NL, JP, KR, and CN
- Refrigerant development HFOs or natural? Trend towards natural refrigerants R600 (butane), R601 (pentane), R744 (CO₂), R718 (H₂O) and synthetic HFOs / HCFOs with low GWP, like R1336mzz(Z), R1233zd(E), R1224yd(Z)

A2EP Briefing: Advances in industrial heat pumps – 3 September 2020

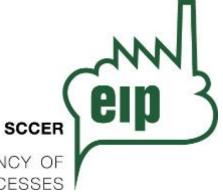
Acknowledgements

This research project is part of the

Swiss Competence Center for Energy Research SCCER EIP

of the Swiss Innovation Agency Innosuisse.

We would like to thank **Innosuisse** for their support.



Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Bundesamt für Energie (BFE) Vertragsnummer: SI/501782-01 Project: HTWP-Annex 48 – Beitrag über HTWP zum IEA TCP HPT Annex 48

EFFICIENCY OF INDUSTRIAL PROCESSES

www.sccer-eip.ch

Thank you for your attention

Dr. Cordin Arpagaus

NTB University of Applied Sciences of Technology Buchs Institute for Energy Systems IES

cordin.arpagaus@ost.ch Tel. +41 81 377 94 34 www.ntb.ch/en/team/cordin-arpagaus

INSTITUTE FOR

ENERGY SYSTEMS

NTE NTE

Interstate University of Applied Sciences of Technology Buchs

University of Applied Sciences of Eastern Switzerland

A2EP Briefing: Advances in industrial heat pumps 3 September 2020

