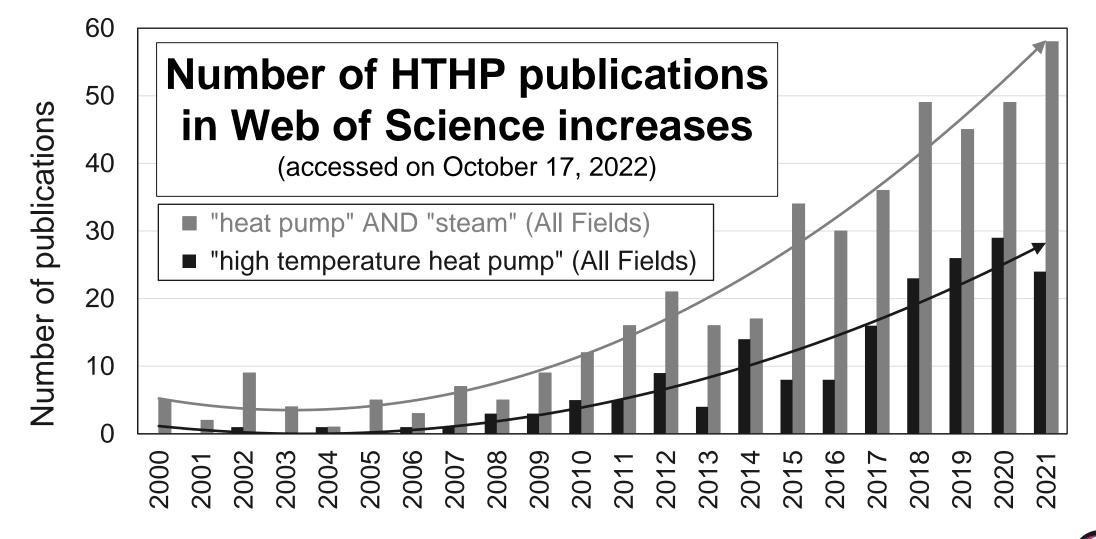
AUSTRALIAN Alliance for Energy Productivity

OST Eastern Switzerland University of Applied Sciences

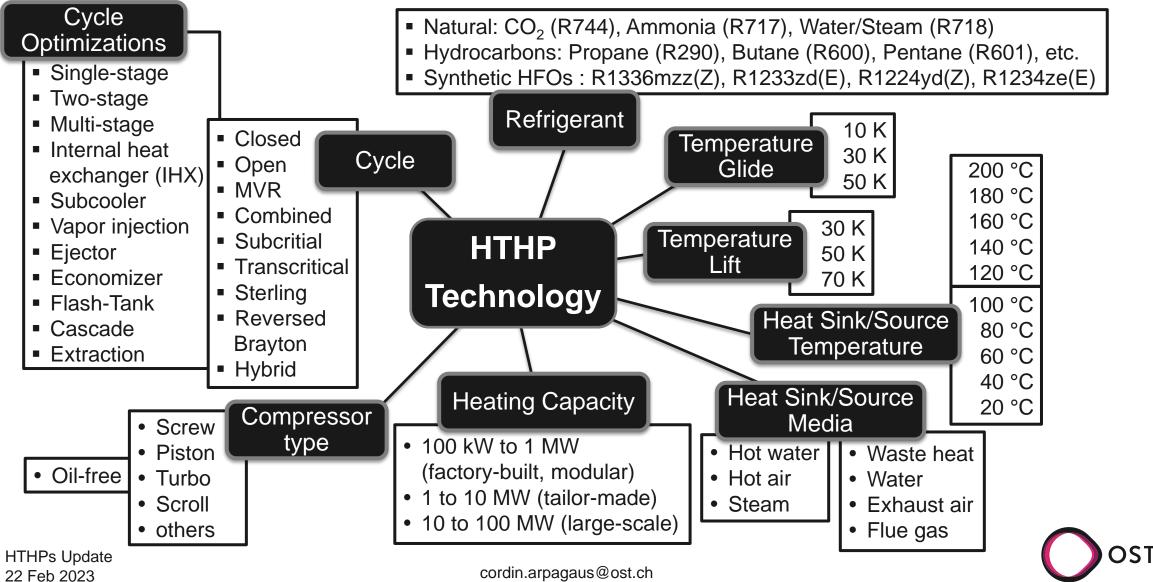
High-Temperature Heat Pumps for Industrial Applications – New Developments and Products for Supply Temperatures above 100 °C

Webinar: 2023 High-Temperature Heat Pumps Update 22 February 2023

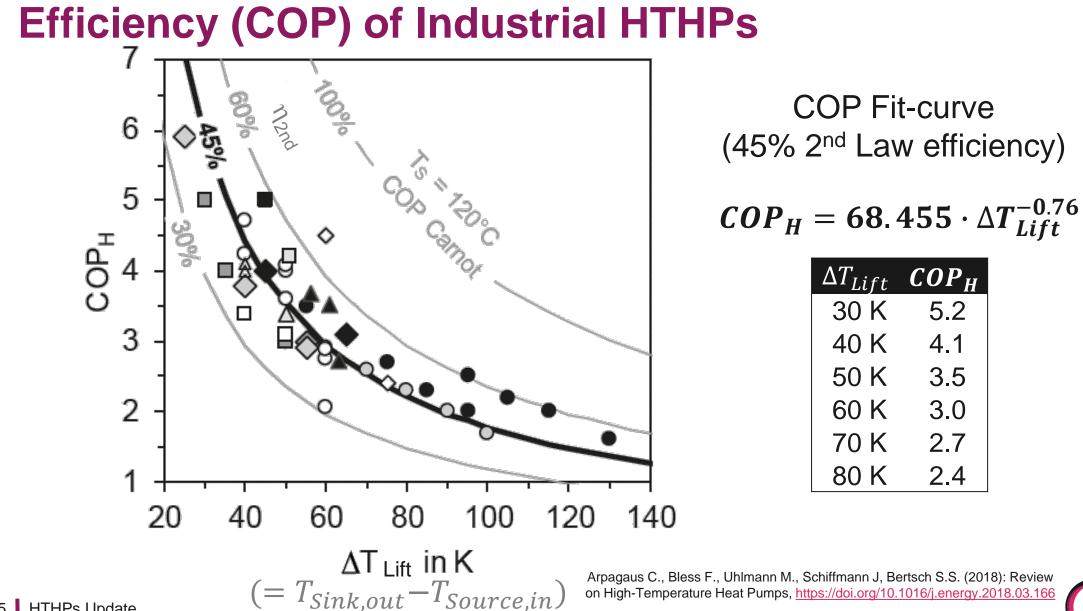
Dr. Cordin Arpagaus cordin.arpagaus@ost.ch Tel. +41 81 377 94 34


Institute for Energy Systems IES www.ost.ch/ies

Co-authors:


- Leon Brendel, PhD
- Dr. Sidharth Paranjape
- Dr. Frédéric Bless
- Michael Uhlmann
- Prof. Stefan Bertsch

Research on HTHPs and Steam Generating Heat Pumps



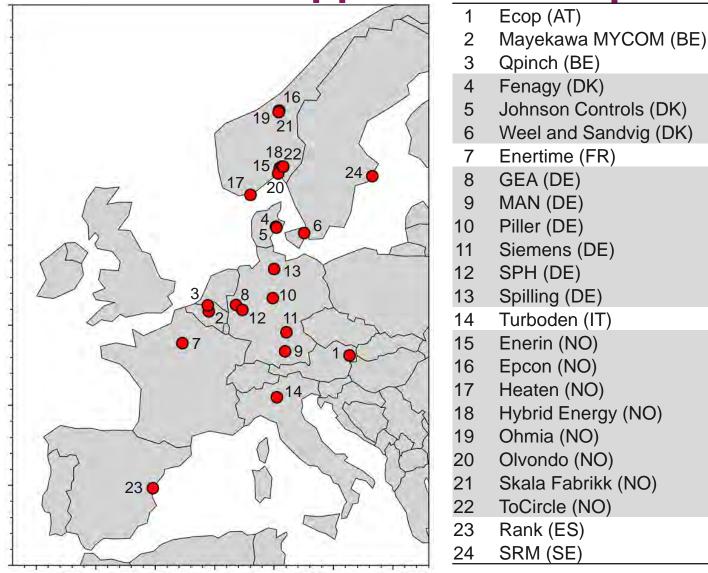
2 HTHPs Update 22 Feb 2023

Selection Guide for High-Temperature Heat Pumps (HTHP)

New Developments and Products for Supply Temperatures above 100 °C KOBELCO Commercial Industrial HTHPs (Status end of 2018) Kobelco SGH 120/165 (Steam Grow Heat Pump) Refrigerants Screw Piston Turbo R134a/R245fa 165°C Kobelco SGH 165 Viking Heat Booster R1336mzz(Z) 160°C **R1336mzz(Z)** SEHIB [°C] GH165 Ochsner IWWDSS RR3b R245fa 130°C Ochsner IWWDS R2R3b R245fa Viking Heat Booster R245fa Max. heat supply temperature R245fa 125°C R245fa Ochsner IWWDS ER3c4 Hybrid Energy AS R717 (NH₂) Kobelco SGH 120 **R245fa** 120°C Combitherm HWW R245fa R245fa 🥅 Mayekawa Eco Sirocco R744 (CO₂) R744 (CO₂) 110°C ENGIE thermeco2 R134a/R1234ze(E) Oilon ChillHeat P 100°C HeatBooster S4 Friotherm Unitop 22 R1234ze(E (ex-Viking Heat 95°C R1234ze(E) Combitherm HWW R1234ze(E) Ochsner IWWHS ER3b R1233zd(E) **Engines AS**) R134a Friotherm Unitop 50 YORK Titan OM R717 (NH) GEA Grasso FXP 63 bar R717 (NH_{2}) HEATEN SABROE HeatPAC Screw R717 (NH) Star Neatpump R717 (NH₂) 90°C OCHSNER Mitsubishi ETW-L R134a ENERGIE TECHNIK SABROE HeatPAC HPX R717 (NH₂ Viessmann Vitocal 350-HT Pro R1234ze(E) Kobelco HEM-HR90, HEM-90A R134a/R245fa Mayekawa Eco Cute Unimo R744 (CO₂) 10 100 1000 10000 100000 Heating capacity [kW] Arpagaus C., Bless F., Uhlmann M., Schiffmann J, Bertsch S.S. (2018): Review on High-Temperature Heat Pumps, https://doi.org/10.1016/j.energy.2018.03.166 HTHPs Update cordin.arpagaus@ost.ch 22 Feb 2023

5 HTHPs Update 22 Feb 2023

cordin.arpagaus@ost.ch


OST

IEA HPT TCP Annex 58 – HTHP Technology review

<complex-block></complex-block>	 Task 1 report will be publised on homepage: <u>https://heatpumpingtechnologies.org/annex58/task1</u> 13 participating countries: Austria, Belgium, China, Canada, Denmark, France, Germany, Netherlands, Japan, Norway, South Korea, Switzerland, US 		
	Operating agent: Danish Technological Institute		
TRL level	4 to 9 (Technology Readiness)		
Average specific cost	200 to 1'500 EUR/kW		
Heating capacity	0.03 to 70 MW		
Max. supply temperature	100 to 280 °C		
Availability	Geographical dependent, e.g. Europe and Japan		
Reviewed HTHP suppliers	28 suppliers, 33 technologies,		
and technologies	83 performance use cases		

6 HTHPs Update 22 Feb 2023

New Developments and Products for Supply Temperatures above 100 °C Headquarters of HTHP suppliers in Europe

Japan

- 25 Fuji (JP)
- 26 KOBELCO (JP)
- 27 Mitsubishi (JP)

Based on database of IEA HPT Annex 58:

https://heatpumpingtechno logies.org/annex58/task1

7 HTHPs Update 22 Feb 2023

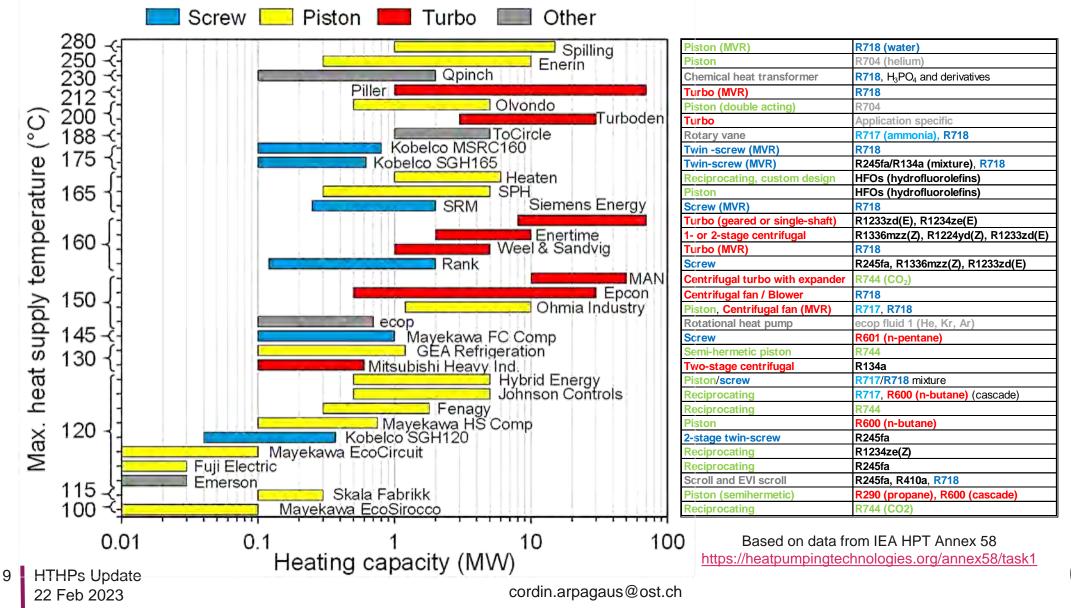
HTHP supplier (High-Temperature Heat Pump)	Country	Compressor type	Working fluid (Refrigerant)	Max. heating capacity (MW)	Max. supply temp (°C)	TRL (Technology Readiness Level)	Spec. invest. cost (EUR/kW)
Spilling	DE	Piston (MVR)	R718 (water)	15	280	9	100 to 400
Enerin	NO	Piston	R704 (helium)	10	250	6	600 to 800
Qpinch	BE	Chemical heat transformer	R718, H ₃ PO ₄ and derivatives	2	230	9	1000 to 2000
Piller	DE	Turbo (MVR)	R718	70	212	8 to 9	850
Olvondo	NO	Piston (double acting)	R704	5	200	9	1200
Turboden	IT	Turbo	Application specific	30	200	7 to 9	300 to 700
ToCircle	NO	Rotary vane	R717 (ammonia), R718	5	188	6 to 7	250 to 430
Kobelco MSRC160	JP	Twin -screw (MVR)	R718	0.8	175	9	n.a.
Kobelco SGH165	JP	Twin-screw (MVR)	R245fa/R134a (mixture), R718	0.62	175	9	n.a.
Heaten	NO	Reciprocating, custom design	HFOs (hydrofluorolefins)	6	165	7 to 9	250 to 350
SPH	DE	Piston	HFOs (hydrofluorolefins)	5	165	6 to 8	150 to 1000
SRM	SE	Screw (MVR)	R718	2	165	5	n.a.
Siemens Energy	DE	Turbo (geared or single-shaft)	R1233zd(E), R1234ze(E)	70	160	9 (to 90 °C)	250 to 800
Enertime	FR	1- or 2-stage centrifugal	R1336mzz(Z), R1224yd(Z), R1233zd(E)	10	160	4 to 8	300 to 400
Weel & Sandvig	DK	Turbo (MVR)	R718	5	160	4 to 9	150 to 250
Rank	ES	Screw	R245fa, R1336mzz(Z), R1233zd(E)	2	160	7	200 to 400
MAN	DE	Centrifugal turbo with expander	R744 (CO ₂)	50	150	7 to 8	300 to 500
Epcon	NO	Centrifugal fan / Blower	R718	30	150	9	200 to 400
Ohmia Industry	NO	Piston, Centrifugal fan (MVR)	R717, R718	10	150	7 to 8	n.a.
ecop	AT	Rotational heat pump	ecop fluid 1 (He, Kr, Ar)	0.7	150	6 to 7	700
Mayekawa FC Comp	ΒE	Screw	R601 (n-pentane)	1	145	5	720
GEA Refrigeration	NL	Semi-hermetic piston	R744	1.2	130	8	200 to 300
Mitsubishi Heavy Ind.	JP	Two-stage centrifugal	R134a	0.6	130	9	n.a.
Hybrid Energy	NO	Piston/screw	R717/R718 mixture	5	120	9	200 to 600
Johnson Controls	DK	Reciprocating	R717, R600 (n-butane) (cascade)	5	120	7 to 8	n.a.
Fenagy	DK	Reciprocating	R744	1.8	120	5 to 6	250 to 425
Mayekawa HS Comp	ΒE	Piston	R600 (n-butane)	0.75	120	7	450
Kobelco SGH120	JP	2-stage twin-screw	R245fa	0.37	120	9	n.a.
Mayekawa EcoCircuit	JP	Reciprocating	R1234ze(Z)	0.1	120	9	n.a.
Fuji Electric	JP	Reciprocating	R245fa	0.03	120	9	n.a.
Emerson	US	Scroll and EVI scroll	R245fa, R410a, R718	0.03	120	6	n.a.
Skala Fabrikk	NO	Piston (semihermetic)	R290 (propane), R600 (cascade)	0.3	115	7	500 to 700
Mayekawa EcoSirocco	JP	Reciprocating	R744 (CO2)	0.1	100	8 to 9	n.a.

Data source: IEA HPT Annex 58 https://heatpumpingtechn ologies.org/annex58/task1

Note:

All information has been provided by the suppliers without third-party validation.

The information was provided as an indicative basis and may be different in final installations depending on applicationspecific parameters.



HTHPs Update

8

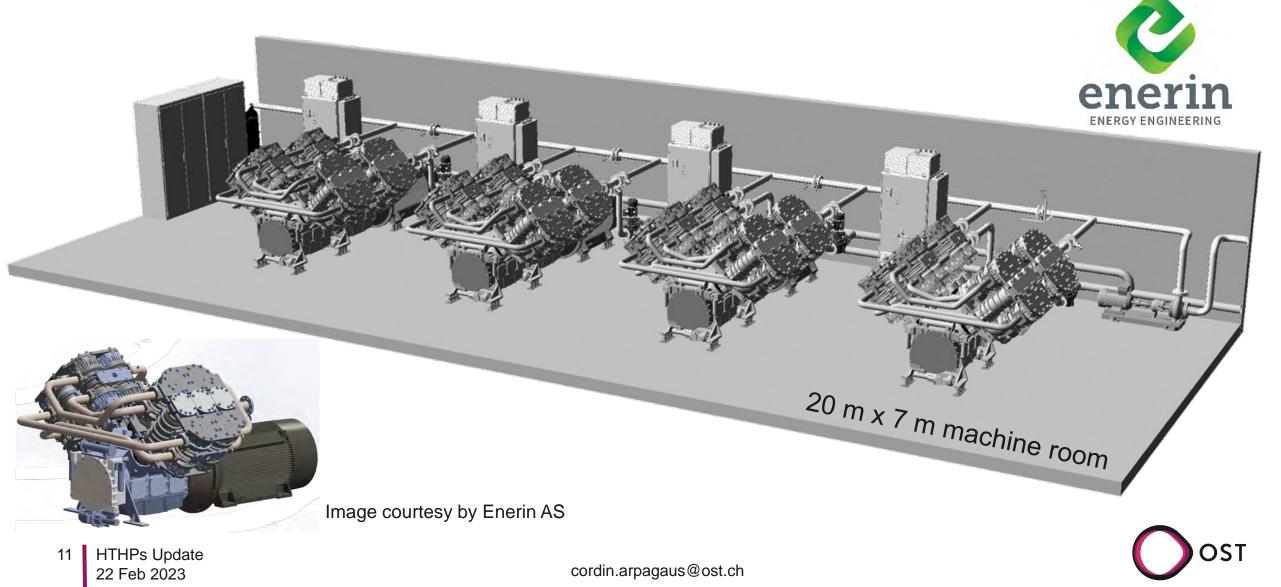
22 Feb 2023

New Developments and Products for Supply Temperatures above 100 °C Max. supply temperature vs. heating capacity of various HTHPs

Production 3D model

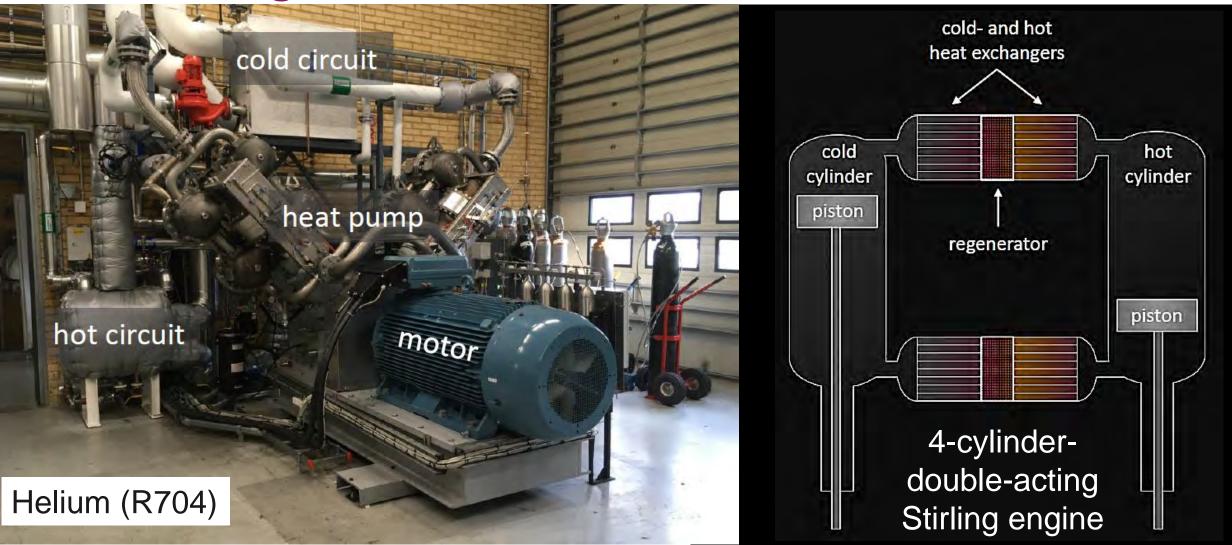
Image courtesy by Enerin AS

HoegTemp Ultra High-Temperature heat pump from Enerin AS

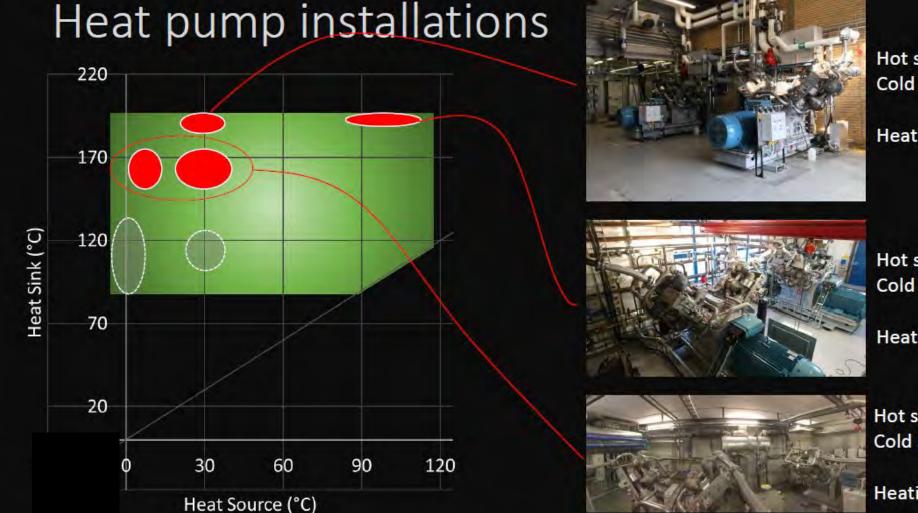


- Double-acting piston compressor
- Helium (R704) refrigerant: zero ODP and GWP
- Heating capacity: 400 kW
- Heat exchangers for heat source and heat sink integrated in compressor assembly
- Patented technology
- 45% Carnot efficiency for high temperature lifts
- More than 30'000 hours of operating experience with prototypes
- 2023: start of commercial deliveries and prototype in biogas facility (10 to 40 °C → 140 to 190 °C)
- 2025: 12-cylinder version (800 kW)

10 HTHPs Update 22 Feb 2023


Illustration of 3.2 MW system with 4 x V12 HoegTemp heat pumps

New Developments and Products for Supply Temperatures above 100 °C Olvondo HighLift


OST

12 HTHPs Update 22 Feb 2023 Images courtesy by Olvondo cordin.arpagaus@ost.ch

Olvondo HighLift – Examples of installations

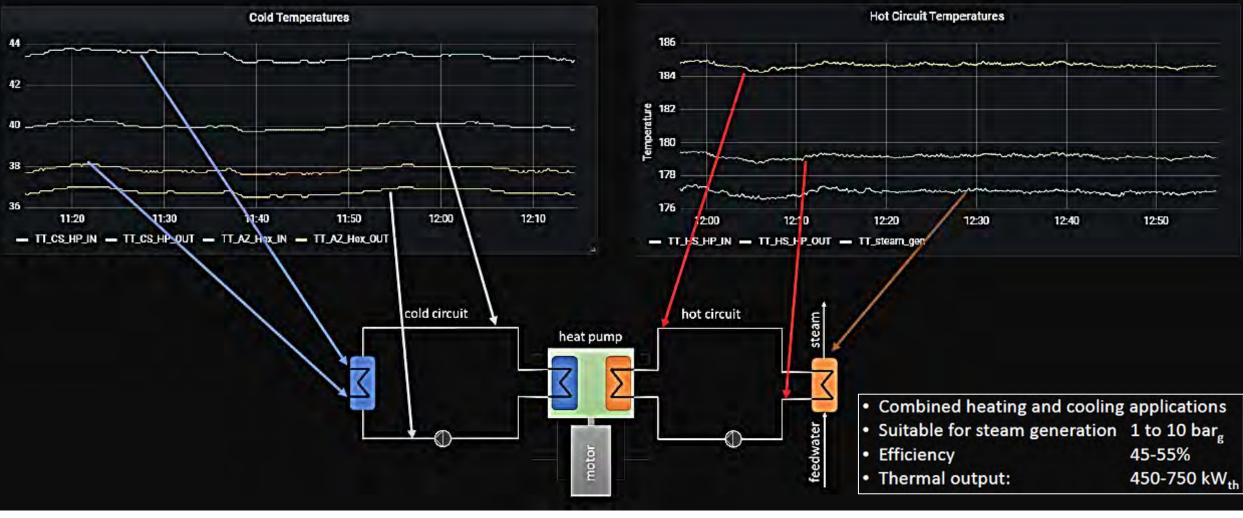
Hot side: 180°C (10 bar) Cold side:40°C

Heating: ~450-500 kW_{th}

Hot side: 180°C (10 bar) Cold side:100°C (DH)

Heating: ~450-500 kW_{th}

Hot side: 170°C (6-7 bar) Cold side: 10°C, 40°C


Heating: ~450-500 kW_{th}

13 HTHPs Update 22 Feb 2023 Image courtesy by Olvondo

HighLift – Operation metrics from an installation

14 HTHPs Update 22 Feb 2023 Image courtesy by Olvondo

PILLER Steam Compressors – VapoFan

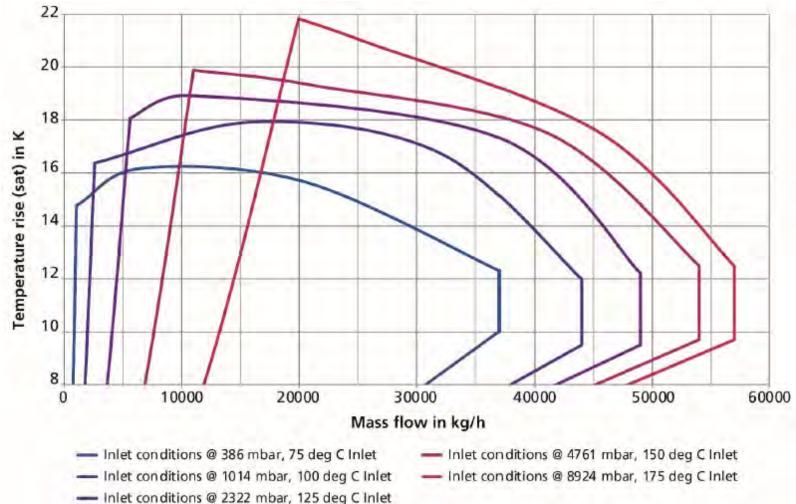
- Up to 10 K temperature rise
- Pressure up to 2.5 bar(g)
- Temperature up to 150 °C

HTHPs Update

22 Feb 2023

15

Mass flows from 200 to 5,000 kg/h



OST

PILLER Steam Compressors – VapoMaxX

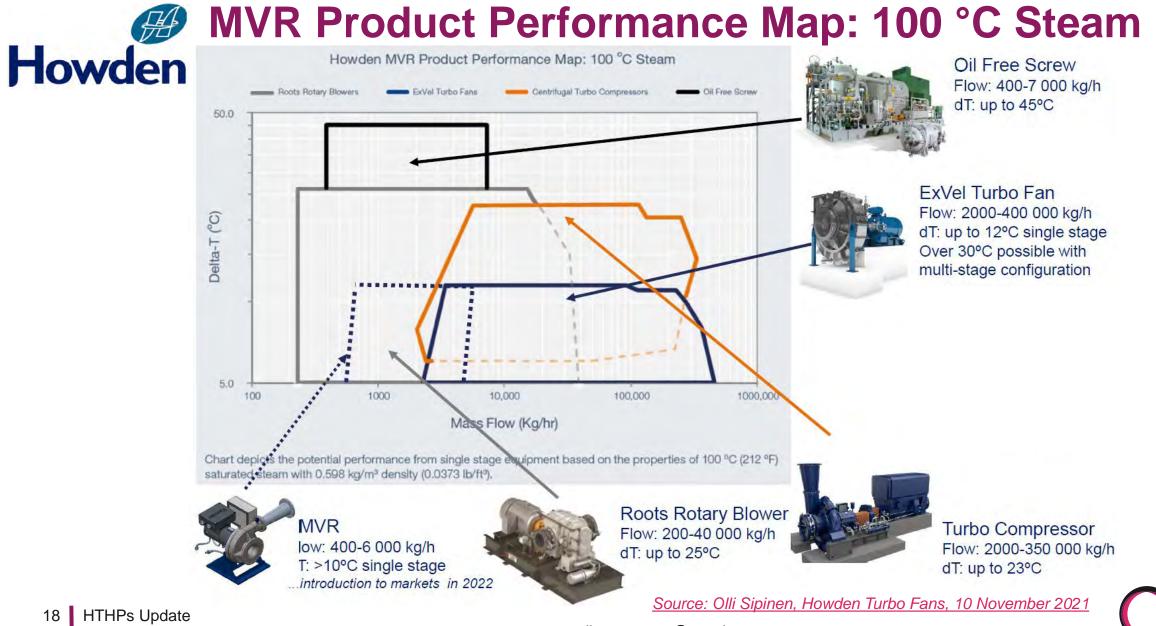
- Up to 20 K temperature rise
- Pressure up to 20 bar(g)
- Temperature up to 215 °C
- Mass flow range up to 57'000 kg/h

Images courtesy by PILLER

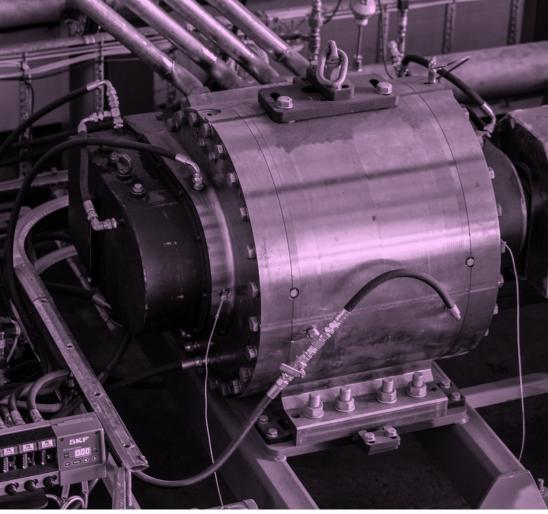
16 HTHPs Update 22 Feb 2023

PILLER MVR Blowers & Compressors – Examples

- Recompression of 11.4 t/h steam (80 °C) (head flow of a cumol distillation column) to 5 bar(g), ~14 t/h steam (after injection, slightly superheated) is fed into a steam network
- Electrical power requirement is 2'313 kW



OST


Images courtesy by PILLER


22 Feb 2023

Tocircle Two-Phase Compressor

Images courtesy by Tocircle Industries AS

- **Rotary vane compressor** (free of lubrication oils)
- Handles 2-phase working fluid (mix of gas and liquid, e.g. pure water or water/ammonia mixture)
- Liquid injection keeps working fluid around saturation line through compression
- High compression ratio of about 5 (compact setup)
- Design temperature 220 °C
- Delivered so far 12 bar(a) (188 °C) with a 2-stage compressor package (footprint 3 m x 2.5 m)

Tocircle High-Temperature MVR System at Scanships drying facility

Image courtesy by Tocircle Industries AS

Pilot system up to 400 kW developed in Free2Heat project (SINTEF, NTNU, Tocircle, Bioretur AS)

- Recovers waste steam at 100 °C as heat source from a drying process and compresses it up to 150 °C to dry bio waste (which is then used to produce biochar)
- In 2023 the plant will be moved to Bioretur in a similar drying process (drying fish sludge)

20 HTHPs Update 22 Feb 2023

Heaten's 1.5 MW_{th} Very High-Temperature Heat Pump

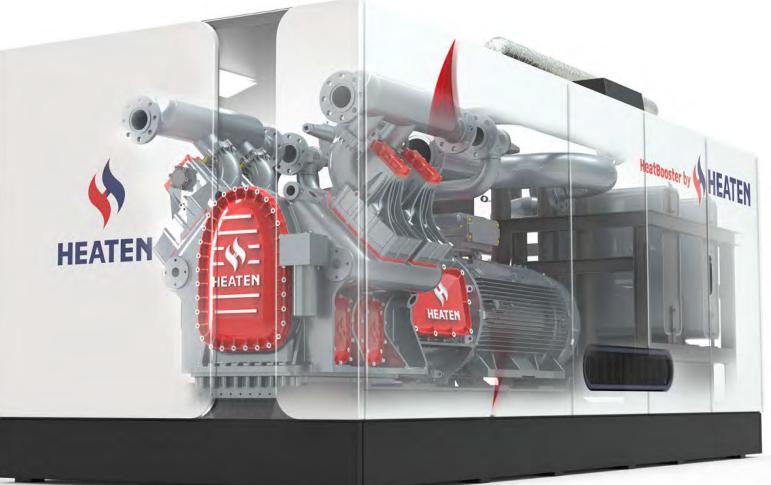
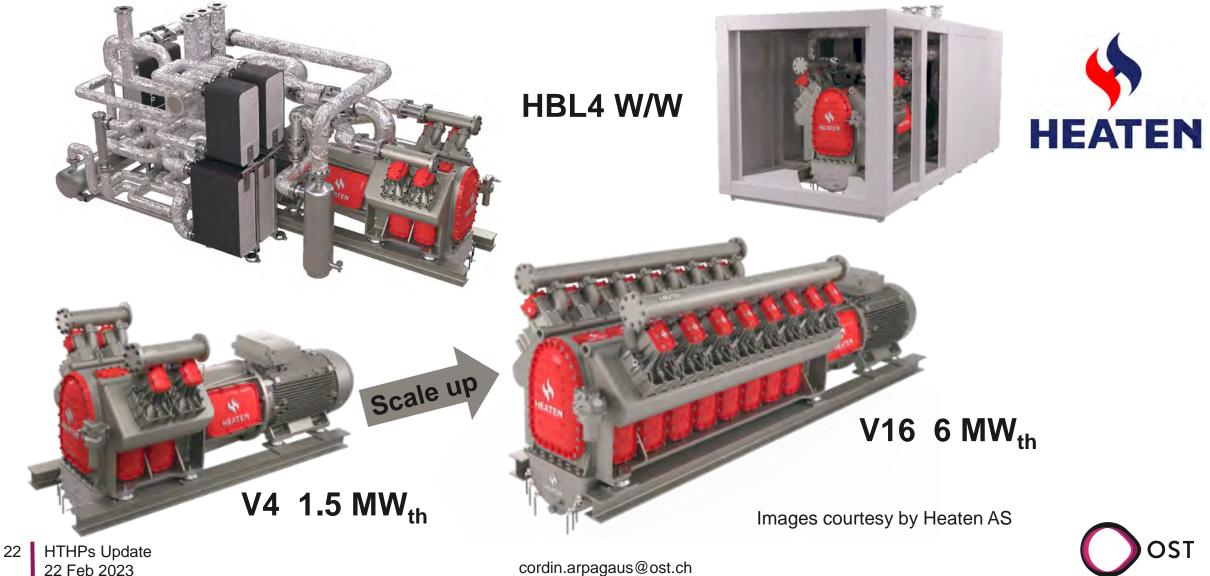



Image courtesy by Heaten AS

- HeatBooster HBL4 1.5 MW
- 20-foot container (5.6 x 2.3 x 2.4 m)
- Pilot by the end of May 2023
- Supply temperature up to 165 °C
- Low-pressure steam production
- R1233zd(E) or R1336mzz(Z)
- Hydrocarbons as working fluids
- 50% to 60% Carnot efficiency
- Upon request: 2-stage heat pump cycle design option
 - "Scale-up 6 MW_{th} soon" with piston compressors in V-shape

21 HTHPs Update 22 Feb 2023

Heaten's HeatBooster Scale-Up Perspective

Heaten's HeatBooster Container Solutions

Images courtesy by Heaten AS


23 HTHPs Update 22 Feb 2023

Steam generating version of the ThermBooster™

Image courtesy by SPH Sustainable Process Heat GmbH

- High-temperature 4-cylinder piston compressor (multiple possible)
- Heating capacity: 400 kW to 1 MW (dependinig on operating point)
- Synthetic refrigerants: R1233zd(E), R1336mzz(E), R1336mzz(Z)
- Max. steam pressure: 6 bar(a), 165 °C

SPH

24 HTHPs Update 22 Feb 2023

Laboratory for testing the ThermBooster™

Image courtesy by SPH Sustainable Process Heat GmbH

25 HTHPs Update 22 Feb 2023

Applications of the ThermBooster™

Application	Gelatine	Thermoplastic from waste
Heat source	85/70 °C	75/65 °C (water)
Heat sink	812 kg/h steam at 2 bar	90/130 °C (hot water) for drying process
Heating capactiy	514 kW	1'017 kW (2 cycles)
Cooling capacity	407 kW	809 kW
Electrical power	118 kW	229 kW (2 compressors)
СОР	4.4	4.4
Energy savings	4.1 GWh _{th} /a	1.25 Mio. m ³ gas/a
CO ₂ emission reduction	550 t CO ₂ /a	~2'400 t CO ₂ /a
	In cooperation with	In cooperation with technotrons
	Energy AG	¥

Image courtesy by SPH Sustainable Process Heat GmbH

Steam producing heat pump (SPHP) with MVR

- Ammonia (R717) (bottom cycle) and water (R718) (top cycle) (only natural)
- Capacity 2 to 10 t steam/h (1 to 5 MW)
- 1.5 MW pilot start-up by end 2022
- Currently available in Norway
- From 2023 also other customers in Europe

- Ohmia Industry
- Humid air (or other sources) used as heat source
 - Dew point determines COP
 - Max. pressure 5 bar(a)

T _{source,In}	T _{source,out}	T _{sink,latent}	p _{steam}	COP _{heating} *
[°C]	[°C]	[°C]	[bara]	[-]
40	30	120	2.0	2.9
40	30	150	5.0	2.3
60	40	120	2.0	3.6
60	40	150	5.0	2.7
70	50	120	2.0	4.2
70	50	150	5.0	3.0

*The given COP values are indications of the possible onsite performance based on an assumed excess heat recovery temperature and will vary depending on the best suited integration concept.

Top Cycle (R718), 90 to 150 °C (5 bara)

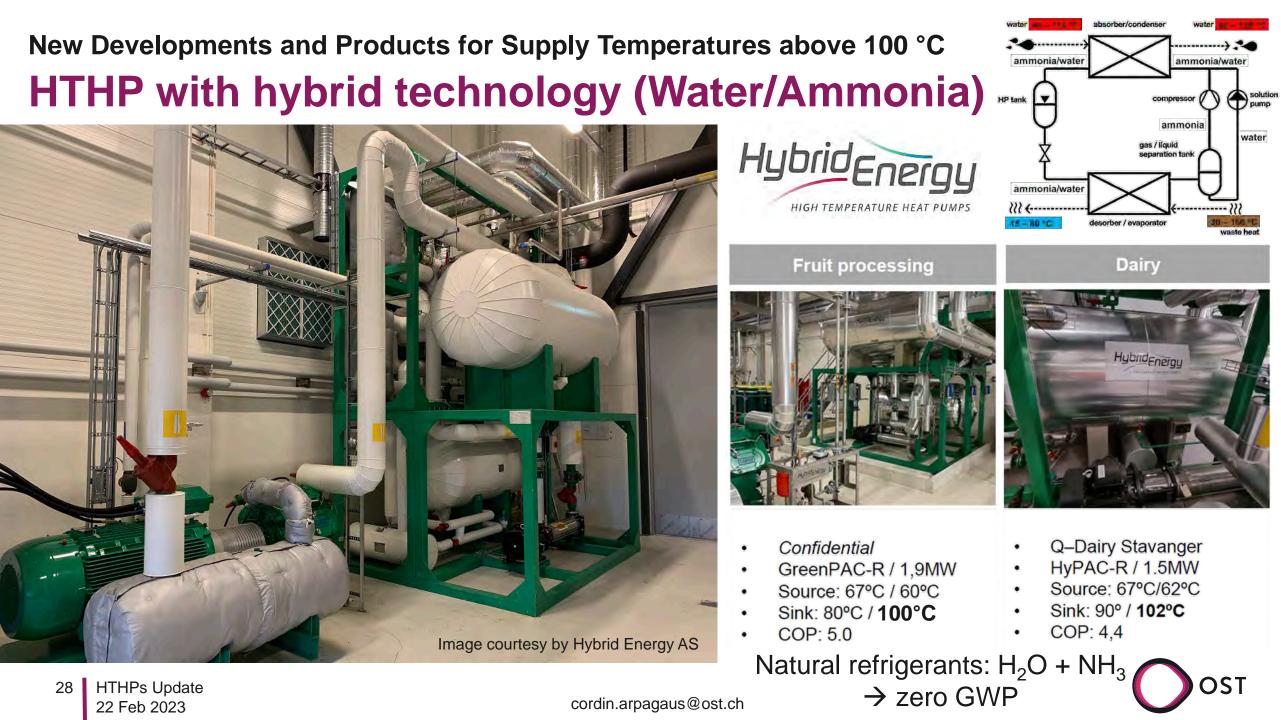


Image courtesy by Ohmia Industry AS

EPCO

27 HTHPs Update 22 Feb 2023

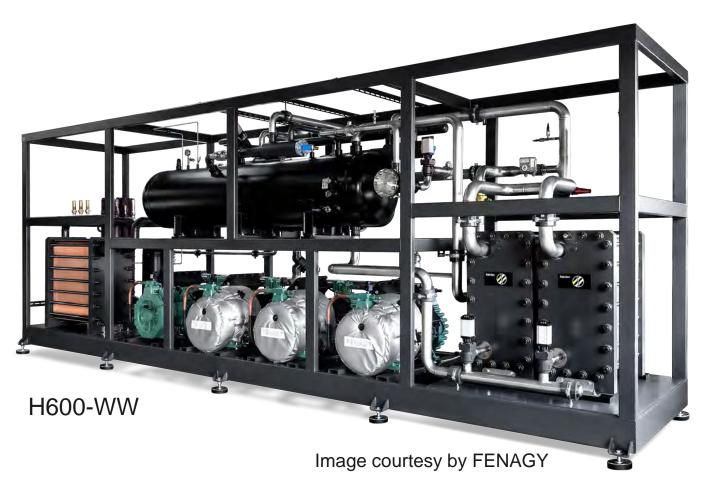
R717/R600 heat pump for district heating

- R717 in the bottom cycle (Sabroe HeatPAC) and R600 in top cycle
- Ventilated in case of leak detection
- Heated ATEX-compliant enclosure to avoid frosting in winter during standstill periods
- Tested and shipped to the client
- Tested with n-butane (R600) and iso-butane (R600a)
- FAT test done online
- Final test at site: start of 2023
- COP is 5.7 at 40 °C/90 °C, 500 kW

29 HTHPs Update 22 Feb 2023

Image courtesy by Johnson Controls

Butane (R600) Heat Pump from Mayekawa Europe NV


- Heating capacity around 750 kW
- Reciprocating compressor
- 18 m² footprint
- Hot brine up to 120 °C (70 °C inlet) for district heating applications
- Heat source: 72 °C (in),
 45 to 65 °C (out)
- COP 3.2 to 4.8

	T _{source,in}	T _{source,out}	T _{sink,in}	T _{sink,out}	COP _{heating}
	[°C]	[°C]	[°C]	[°C]	[-]
5.	72	65	70	120	4.8
-	72	60	70	120	4.4
ľ	72	55	70	120	4
	72	50	70	120	3.7
	72	45	70	120	3.2

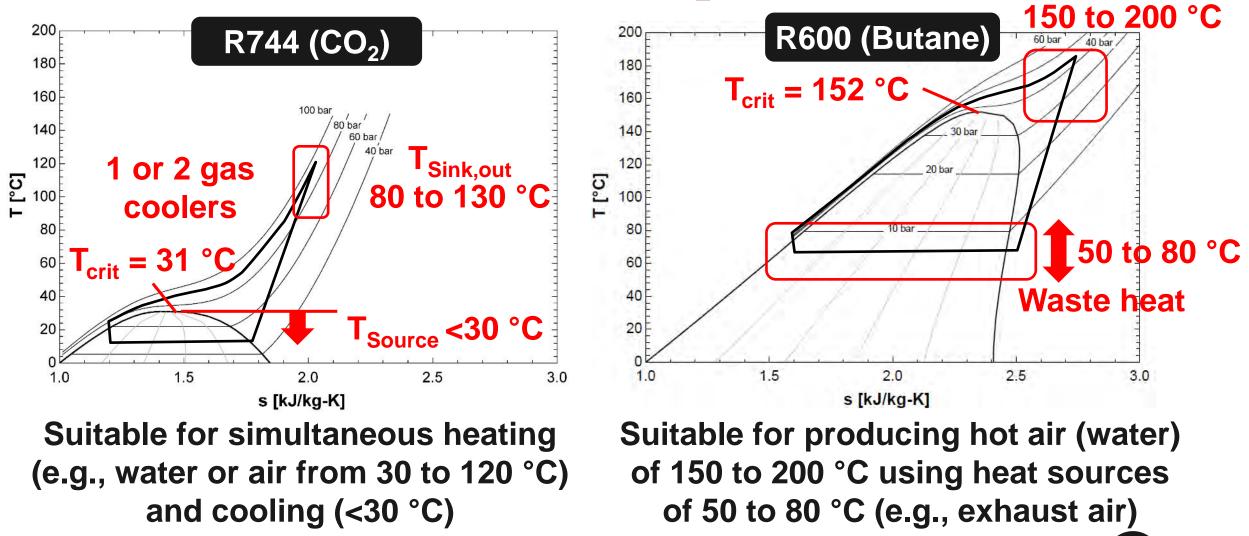
30 HTHPs Update 22 Feb 2023

CO₂ Heat Pump System for Hot Water Production

FENAGY FUTURE ENERGY SOLUTIONS

- Heating capacity from 0.3 to 1.8 MW
- Hot water heating from 30 to 120 °C
- Heat source: air (AW) or water (WW)
- Reciprocating compressors (Dorin or Bitzer)
- Low heat sink inlet temperature needed to increase efficiency in CO₂ cycle

Estimated performance


T _{source,in}	T _{source,out}	T _{sink,in}	Tsink,out	COPheating
[°C]	[°C]	[°C]	[°C]	[-]
0	-5	30	120	2,46
0	-5	30	120	2,61*
5	0	30	120	2,63
5	0	30	110	2,91*

*including expander

31 HTHPs Update 22 Feb 2023

Comparison of Transcritical CO₂ and Butane cycles

32 HTHPs Update 22 Feb 2023

cordin.arpagaus@ost.ch

OST

Dorin – R600 (Butane) ATEX Piston Compressor for HTHPs

Lubrication channel

DLC coated wrist pin

Anodized aluminum pistons

bushing

HTHPs Update 33 22 Feb 2023

Source: Faralli (2021): R600 Compressor for High Temperature Heat Pump, European Heat Pump Summit 2021, Nuremberg, October 26, 2021

Oilon ChillHeat P-series (High temperature option) heat pumps

Application example at Carlfors Bruk AS (producer of metallic pigments)

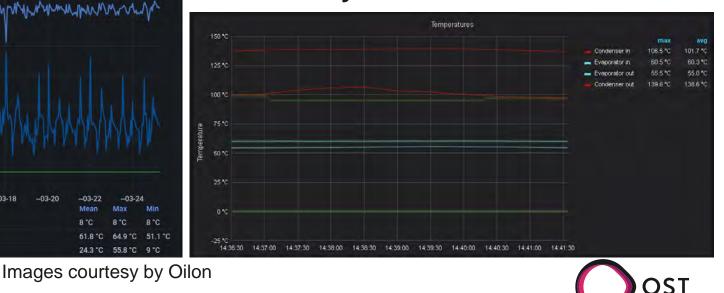
- Heat source: Recovery and process cooling
- Heat sink: Space and process heating
 - 34 HTHPs Update 22 Feb 2023

oilon

oilon

- 120 °C water can be produced at full power
- Refrigerant of the future GWP 1
- Safety class A1 (non-toxic and non-flammable)
 - Piston compressor
- Water temperatures (cooling/heating): 20 °C/110 °C
- Cooling capacity: 285 kW
- Heating capacity: 0 to 500 kW (very hot water), 10 to 354 kW (warm water)
- ChillHeat pumps:
 - 1 x S180 SU HC VFDx1 R1234ze
 - 2 x P300 SU HC VFDx1 High temperature R1233zd

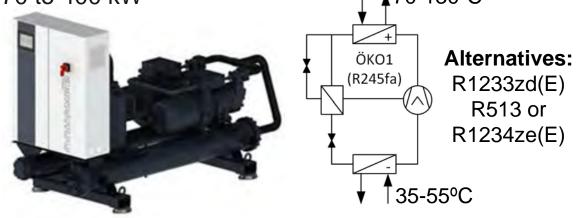
New Developments and Products for Supply Temperatures above 100 °C **Process parameters overview**



Heating setpoint: 105 °C

Cooling average: 24.3°C (9 to 56 °C)

Produced heating	Produced cooling	Consumed	Average combined
energy	energy	electrical energy	COP
131 MWh	91.2 MWb	42.3 MWh	5.26


More is yet to come ...

35 HTHPs Update 22 Feb 2023

HTHP Case Studies

IWWDS ER3b (1-stage with economizer) ENER

ľ	WWDSS R2R3I	b (2-stage cascade)	Ref
ç	90 to 530 kW	_ ∮95-130ºC	СО
		Alternatives: R1233zd(E) R134a R513 or R1234ze(E)	
36	HTHPs Update 22 Feb 2023	↓ 10-25°C cordin.arpagau	ıs@ost.ch

	UCNED		
RGIE TECHNIK		Mänttä-Vilpula (FIN)	Leather production Couro Azul (POR)
	Heat pump type	IWWDS 120 ER3	IWWDS 270 ER4b
	Heating Capacity	158 kW	309 kW
	Application	Local district heating network	Hot water for production
	Heat Sink	120 °C	120 °C
	Heat Source	45 to 55 °C	55 °C
	Source	District heating network return line	Water
	Compressor Refrigerant	Screw ÖKO 1 (R245fa)	Screw R1233zd
	СОР	2.0	2.47


Images courtesy by OCHSNER Energie Technik GmbH

Bitzer – CSH2T Prototype Screw Compressor

OST

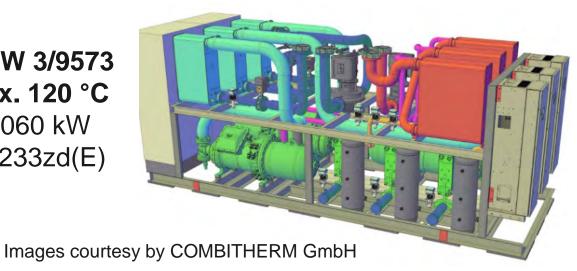
37 HTHPs Update 22 Feb 2023

cordin.arpagaus@ost.ch

high temperature heat pumps, European Heat Pump Summit 2021, Nuremberg, October 26, 2021

Application Examples of HTHPs from **Combirgherm**

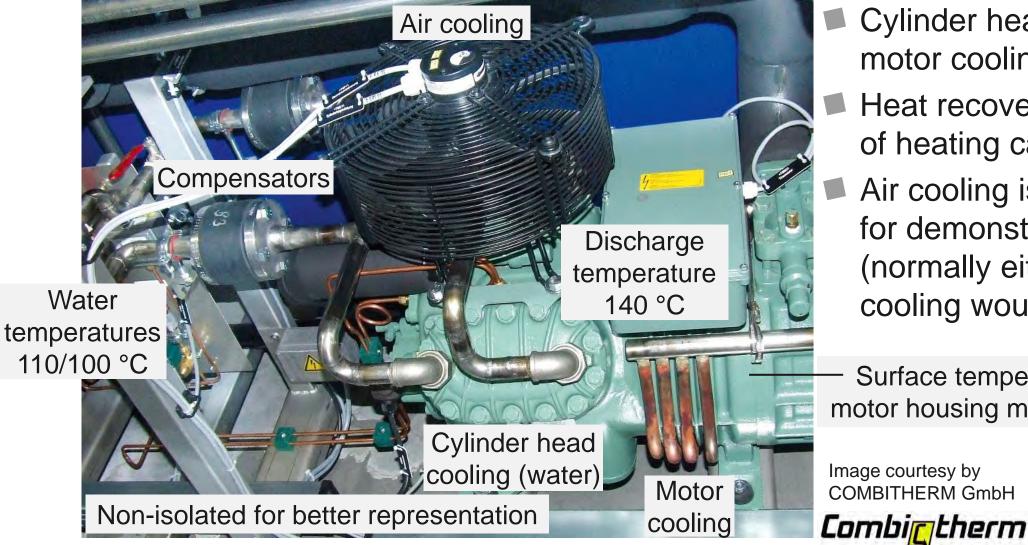
Animal Feed Production Max. 120 °C (hot water) 2 x 750 kW (heating capacity) Waste air from dryers (heat source)



Aqua Feed Production Max. 120 °C 3.5 MW Waste air from dryers

APPARATE- UND ANLAGENBAU

HWW 3/9573 Max. 120 °C 1'060 kW R1233zd(E)



Cleaning Technology Max. 100 °C 400 kW Waste heat

HTHPs Update 38 22 Feb 2023

Example of compressor cooling and waste heat recovery

- Cylinder head cooling and motor cooling (water loops)
 - Heat recovery ~6% (~4 kW) of heating capacticy (65 kW)
- Air cooling is also installed for demonstration purposes (normally either air or water cooling would be installed)

OST

Surface temperature of motor housing max. 120 °C

Image courtesy by COMBITHERM GmbH

HTHPs Update

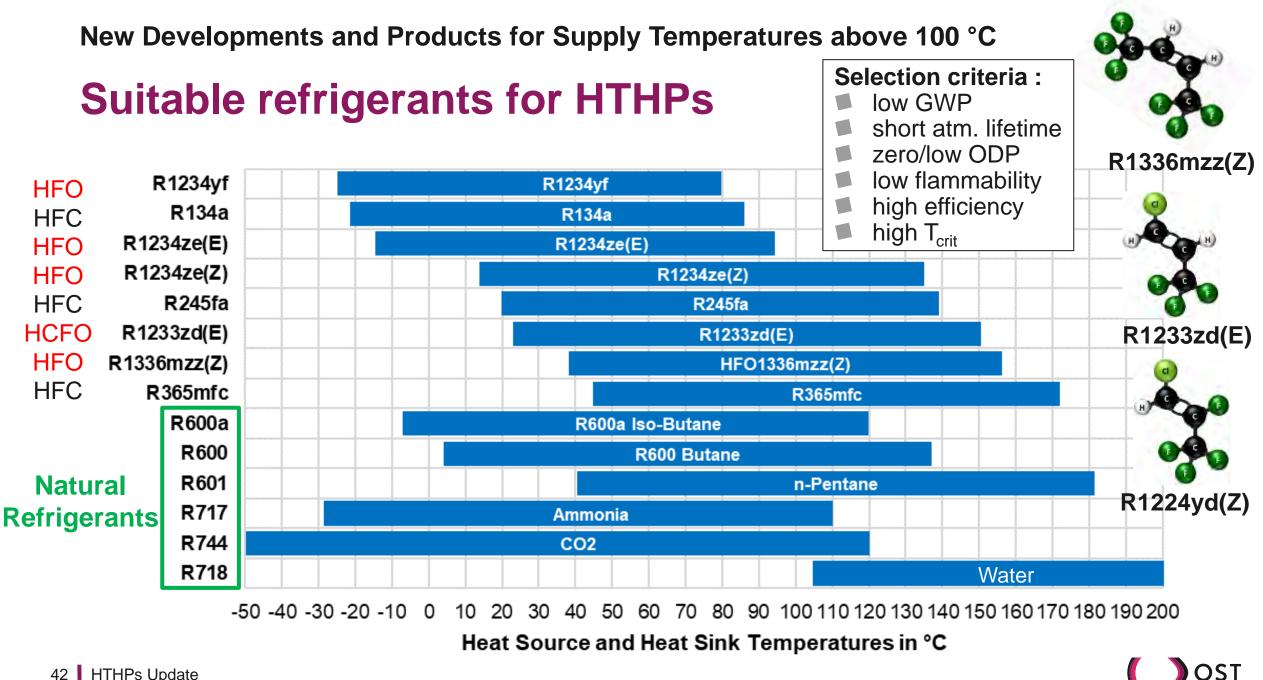
22 Feb 2023

39

Example of compressor cooling and waste heat recovery

Semi-hermetic **Reciprocating Compressor** (Bitzer Model 4J-22.2Y)

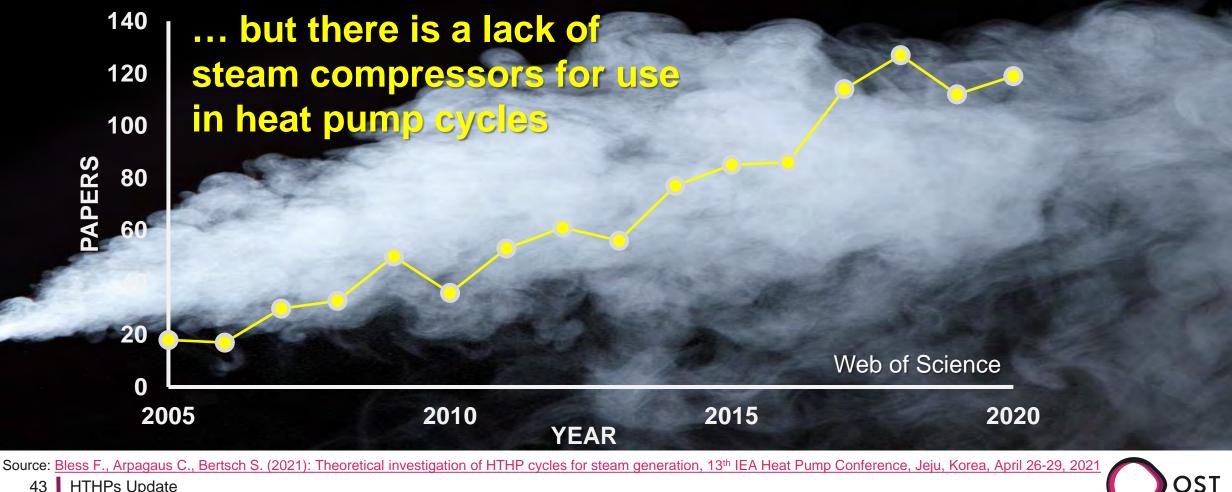
Images courtesy by COMBITHERM GmbH



40 HTHPs Update 22 Feb 2023

Examples of Large Scale HTHPs (>1 MW heating capacity) for district heating and industrial applications

Friotherm (CH)	Turboden (IT)	MAN Energy Solutions (CH)	Mitsubishi MHPS (DE)	Siemens (DE)	Ochsner (AT)	Kobelco (JP)
FRIOTHERM Heat Pump	LHP30 LHP150	ETES Electro-thermal energy storage	D-GWP	Large-scale	IWWDSS R2R3b IWWHS ER3b TWIN	SGH 120/165
R1233zd(E) + R718 (Water)	R601 + R718 (n-Pentane + Water)	R744 (CO ₂)	R600a + R718 (Iso-Butane + Water)	HFOs	Öko (R245fa) R1233zd(E) (HFOs)	R245fa + R718 (water)
25 MW	2.7 MW 14.4 MW	5 to 100 MW	4.3 MW	4 to 70 MW	Up to 750 kW TWIN 2.4 MW	Up to 624 kW Cascade 2.5 MW
137 °C	115 °C	150 °C	174 °C	150 °C	130 °C	165 °C

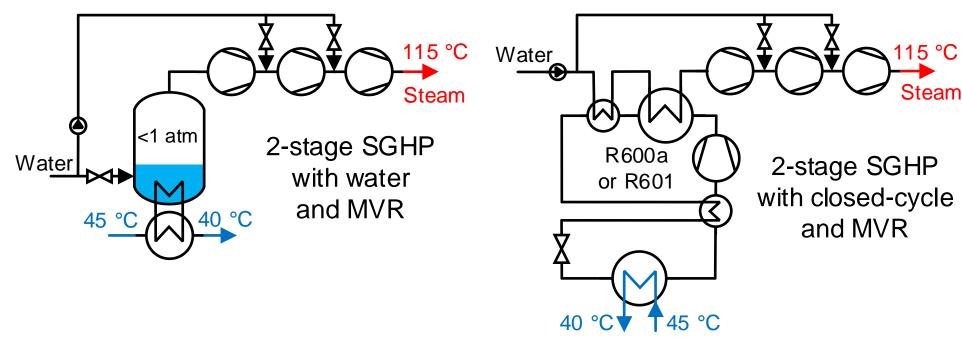


42 HTHPs Update 22 Feb 2023

Steam Generating Heat Pumps

STEAM

Publications with keywords «steam + heat pump» are increasing



43 HTHPs Update 22 Feb 2023

Design concepts of Steam-Generating Heat Pumps

Open cycle with water and MVR Combined cycle with closed cycle (subcooler) and cycle (MVR)

STEAM 2-stage cascade with flash tank 105 °C ↓ ▲115 °C R1233zd R1234ze(

22 °C

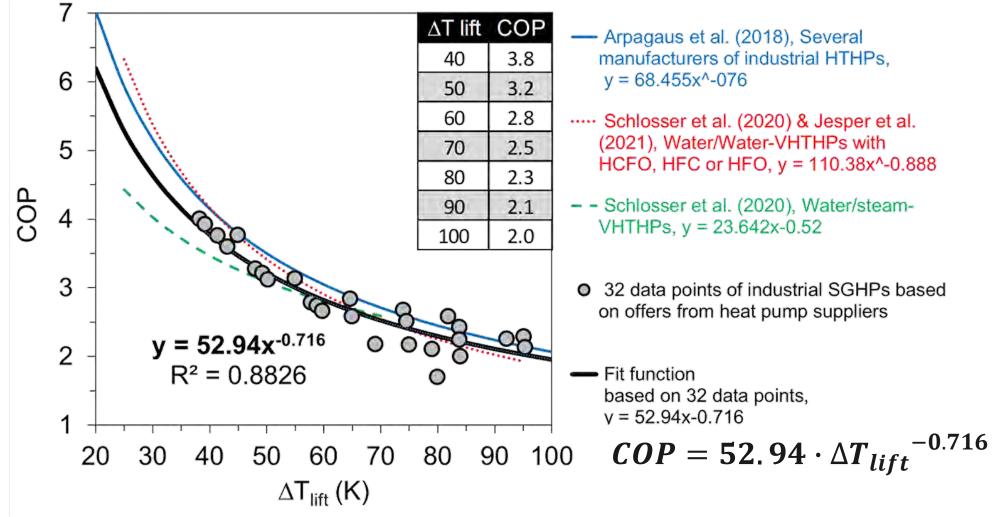
`27 °C

Source: Arpagaus C., Bless F., Bertsch,S. (2022): Techno-economic analysis of steam generating heat pumps for integration into distillation processes, 15th IIR-Gustav Lorentzen conference on Natural Refrigerants, June 13-15, 2022, Trondheim, Norway, http://dx.doi.org/10.18462/iir.gl2022.0029

44 HTHPs Update

22 Feb 2023

New Developments and Products for Supply Temperatures above 100 °C Research on Steam Generating Heat Pumps


OST

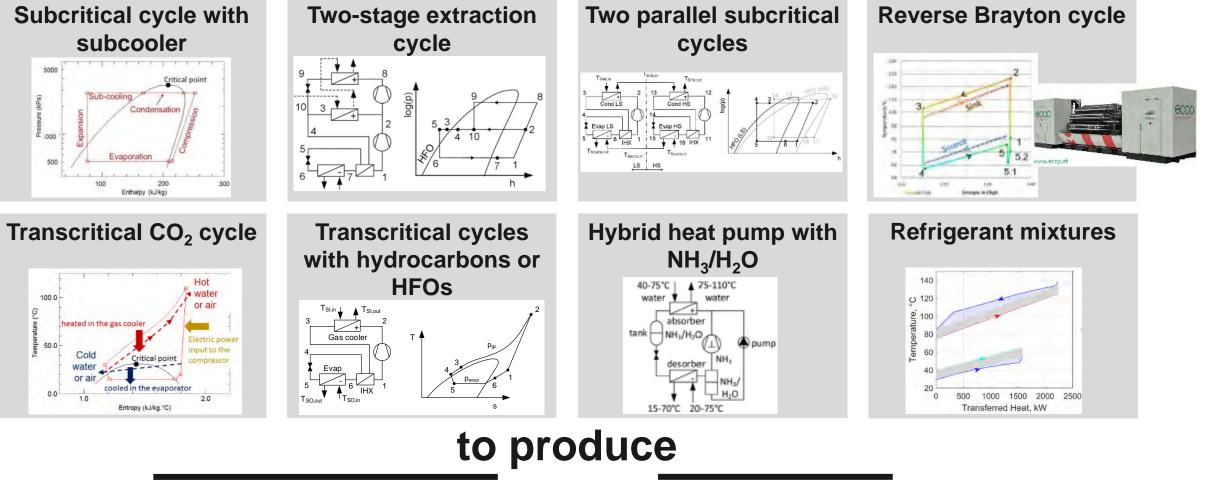
	Country, organization	Heating capacity (kW)	Heat source temperature (°C)	Steam temperature (°C) (flow rate kg/h)	Heat pump cycle, compressor	Refrigerant	COP (source/sink temperature °C)
		300	60	128 (422)	HTHP + flash tank, piston	R245fa	n.a.
	Korea Institute of Energy Research (KIER)	100	70	120	HTHP + flash tank, open screw	R245fa	3.05 (70/120)
	Research (RIER)	25	60	104 - 123	HTHP + IHX + flash tank + valve	R245fa	~ 3.5 (60/105)
	Seoul National University,	6 - 8	60 - 70	115 - 125 (10.8)	HTHP, piston	R245fa	2.95 (60/125) 3.59 (60/115)
	Korea	6 - 12	60 - 80	115 - 125	HTHP + steam reservoir + MVR	R245fa	3.39 (80/125) 2.72 (60/115)
	Tokyo Electric Power, Mayekawa, Japan	400	80 - 90	130	HTHP, screw	R601 (pentane)	4.5 (80/130)
	Kobe Steel, Ltd., CRIEPI, electric companies, Japan	660 380	35 - 70 25 - 65	165 (890) 120 (20)	HTHP + MVR, screw	R134a/R245fa (SGH165) R245fa (SGH120)	2.5 (70/165) 3.2 (65/120)
*:	Mayekawa, Waseda University, Japan	300	80	100 - 180 (thermal oil)	Transcritical HTHP, centrifugal	R600 (butane)	ane) 3.5 (80/180) calculated
	Shanghai Jiao Tong University, China	285	75 - 85 (evaporation)	111 - 150 (condensation)	VHTHP + flash tank, twin-screw	R718 (water)	6.10 (85/117) 1.96 (85/150)
	ECN, IBK, Bronswerk, Smurfit-Kappa, Netherlands	160	60	125 (2.4)	HTHP + IHX + subcooler, piston	R600 (butane)	1.9 (60/125)
	Olvondo Technology, TINE dairy, Norway	449	80 - 90	184 (10)	HTHP (reversed Stirling cycle), piston	R704 (helium)	2.1 (85/183)
	NTNU, SINTEF, Norway	20	25 - 35	115	HTHP cascade + IHX	R290/R600 (propane/butane)	2.1 (25/115)
	AlterECO project, EDF, France	200	35 - 60	80 -140 (condensation)	HTHP + IHX + subcooler, two scroll	ECO3 containing R245fa	2 - 3 (50-60/125) (evap/cond)
	PACO project, Uni Lyon, EDF, France	380	85 - 95	130 -140 (condensation)	HTHP + flash tank. twin-screw	R718 (water)	~ 5.5 (94/121)
*	National Research Council Canada	45	55 - 80	103.5 - 135.5	HTHP + IHX, piston	R113 & R123 (ozone depleting)	2.7 (75/135, R113) 3.6 (60/120, R123)

Source: Bless F., Arpagaus C., Bertsch S. (2021): Theoretical investigation of HTHP cycles for steam generation, 13th IEA Heat Pump Conference, Jeju, Korea, April 26-29, 2021

45 HTHPs Update 22 Feb 2023

Efficiency (COP) of industrial Steam Generating Heat Pumps (SGHP)

Source: Arpagaus C., Bless F., Bertsch,S. (2022): Techno-economic analysis of steam generating heat pumps for integration into distillation processes, 15th IIR-Gustav Lorentzen conference on Natural Refrigerants, June 13-15, 2022, Trondheim, Norway, http://dx.doi.org/10.18462/iir.gl2022.0029

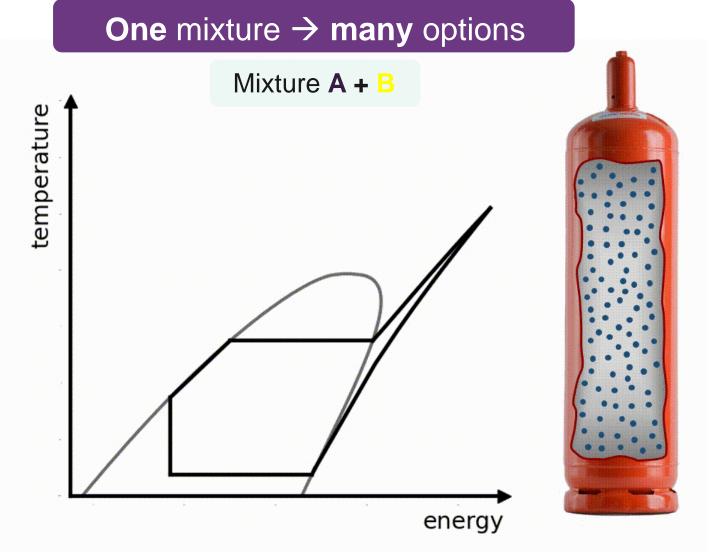

Oost

STEAM

46 HTHPs Update

22 Feb 2023

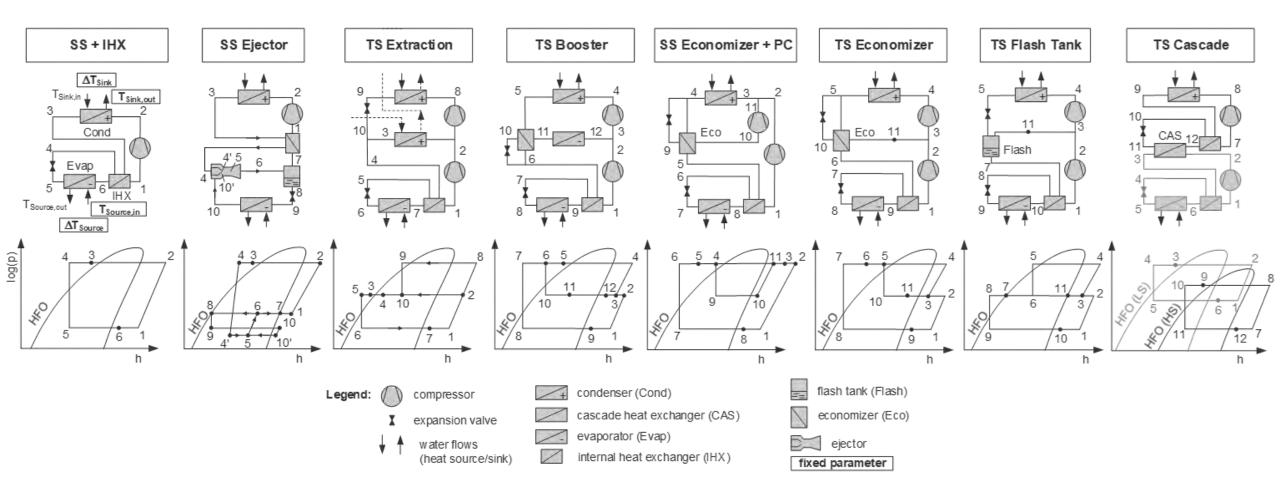
HTHP Technologies for Large Temperature Glides



HOT WATER or HOT AIR

47 HTHPs Update 22 Feb 2023 Source: Arpagaus C., Bless F., Bertsch S. (2021): Lunch Talk - Industrial Heat Pumps, SWEET DeCarbCH, November 9, 2021

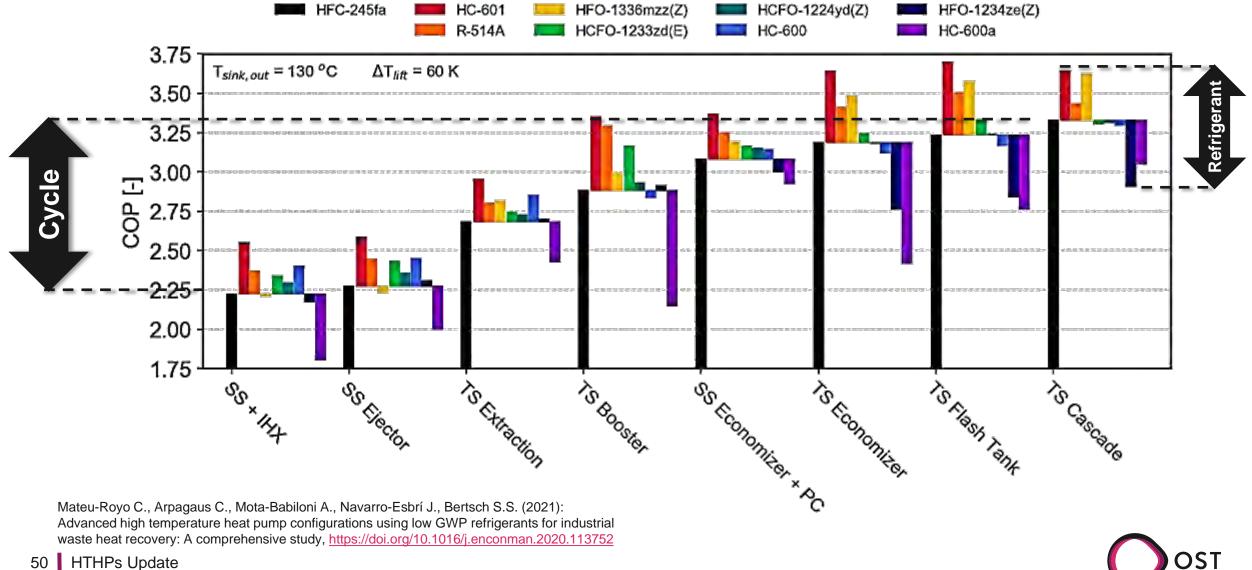
New Developments and Products for Supply Temperatures above 100 °C Refrigerant mixtures for Large Temperature Glides


High flexibility in T-levels and T-glide

Animation from Swiss Bridge Project: High-efficiency high-temperature heat pumps with temperature glide

48 HTHPs Update 22 Feb 2023

New Developments and Products for Supply Temperatures above 100 °C Optimization of HTHP cycle design



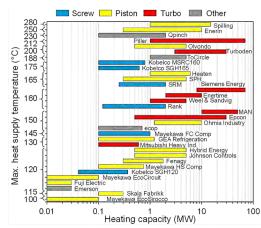
Mateu-Royo C., Arpagaus C., Mota-Babiloni A., Navarro-Esbrí J., Bertsch S.S. (2021): Advanced high temperature heat pump configurations using low GWP refrigerants for industrial waste heat recovery: A comprehensive study, <u>https://doi.org/10.1016/j.enconman.2020.113752</u>

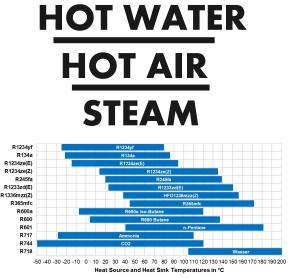
49 HTHPs Update 22 Feb 2023

Influence of cycle design and refrigerant on efficiency (COP)

22 Feb 2023

51 HTHPs Update 22 Feb 2023


cordin.arpagaus@ost.ch


New Developments and Products for Supply Temperatures above 100 °C

Summary and conclusions

- Commercial HTHP products and technologies with supply temperature >100 °C are increasingly available on the market (various manufacturers, >100 kW to >10 MW heating capacity) → IEA HPT Annex 58 overview
- Various successful case studies, demonstration projects, and HTHP process integrations presented (hot water, hot air, steam)
- Future developments about specific HTHP cycle designs to precisely match temperature requirements → for large temperature glides, steam generation, and large-scale HTHPs
- HTHP integration concepts vary from case to case → tailor-made
- Significant energy savings and CO₂ emission reductions are possible
- High research activity worldwide
- Refrigerants trend towards natural R600 (butane), R601 (pentane), R744 (CO₂), R718 (H₂O), R717 (NH₃), and synthetic HFOs with low GWP, like R1336mzz(Z), R1233zd(E), R1336mzz(E), R1224yd(Z), R1234ze(E), etc.

Thank you for your attention! Acknowledgements

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy SFOE

Project: Annex 58 HTHP-CH Integration of High-Temperature Heat Pumps (HTHPs) in Swiss Industrial Processes (SI/502336-01)

sweet	swiss energy research for the energy transition
DeCarbCH	
www.sweet-dec	arb.ch

HTHPs Update

22 Feb 2023

52

Dr. Cordin Arpagaus

Eastern Switzerland University of Applied Sciences Institute for Energy Systems IES

cordin.arpagaus@ost.ch Tel. +41 58 257 34 94 www.ost.ch/ies

